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By projecting onto complex optical mode profiles, it is possible to estimate arbitrarily small separations
between objects with quantum-limited precision, free of uncertainty arising from overlapping intensity
profiles. Here we extend these techniques to the time-frequency domain using mode-selective sum-
frequency generation with shaped ultrafast pulses. We experimentally resolve temporal and spectral
separations between incoherent mixtures of single-photon level signals ten times smaller than their optical
bandwidths with a tenfold improvement in precision over the intensity-only Cramér-Rao bound.
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Introduction.—The time-honored Cramér-Rao lower
bound (CRLB) [1,2] is credibly the most appropriate tool
to address the resolution limits for incoherent imaging, as
highlighted in recent years [3–9]. This is especially pertinent
when photon shot noise is the dominant noise source (as in,
e.g., astronomical observations) and a statistical treatment
of resolution is indispensable. Nonetheless, in spite of
these compelling results, Cramér-Rao resolution limits
did not demand a great deal of attention until recent works
examined microscopy limitations from a photon-counting
perspective [10–12]. The chief idea can be formalized
through the Fisher information [13], which quantifies the
amount of information gained per photon detection and is
directly associated to the CRLB. For direct intensity
imaging, the Fisher information drops to zero for object
separations smaller than the spread of the optical field. This
precipitous drop, named Rayleigh’s curse, limits the use-
fulness of photon counting for metrology.
This line of questioning cleared the way for a

fresh reexamination of the problem by Tsang and co-
workers [14–18]. Surprisingly, when one calculates the
quantum Fisher information [19] (i.e., optimized over all
the possible quantum measurements), the associated quan-
tum CRLB maintains a fairly constant value for any
separation of the sources. This shows the potential for
parameter estimation of distributions with precision unaf-
fected by Rayleigh’s curse. The key behind these tech-
niques is phase-sensitive measurement in mode bases other
than intensity [20,21], requiring more elegant measurement
procedures but no fragile quantum resources. This has
been experimentally demonstrated for spatially separated
objects by holographic mode projection [22], heterodyne
detection [23,24], and parity-sensitive interferometers [25].
As the space-time duality of light has already provided

valuable insights and tools in classical time-frequency meas-
urement [26–28], it is worthwhile to consider the advantages
these techniques can offer when adapted to metrology and
analysis in the time-frequency domain [29–32].
In this Letter, we show that mode-selective measurement

can be harnessed to estimate separations in time and
frequency well below the spread of the source light. In
an analogy to the Rayleigh limit in space, this allows us to
overcome the equivalent criterion in measuring spectral
separations [33], which states that the minimum resolvable
separation of the spectral maxima is equal to the half-
maximum width. We experimentally realize this enhance-
ment in both time and frequency estimation settings by
projectively measuring Hermite-Gauss time-frequency
modes, as initially proposed in Ref. [34]. We extend this
idea to click-counting detection using sum-frequency gen-
eration with shaped ultrafast pulses in group-velocity
engineered nonlinear waveguides. We explicitly demon-
strate precision below the intensity-only CRLB, establish-
ing mode-selective measurement as a valuable tool for
pushing metrological limits in multiple physical domains.
Quantum analysis of time-frequency metrological prob-

lems has already provided a plethora of useful tools.
In particular, quantum advantages can be realized in
time-of-flight measurement and synchronization by
exploiting entanglement [35], squeezing [34,36], and
bunching [37], and considering quantum techniques and
analysis has inspired classical techniques that outperform
their preexisting counterparts [38]. Additionally, enhanced
time-of-flight ranging techniques with quantum limits
outperforming intensity detection have been demonstrated
using homodyne detection with shaped local oscillators in
higher-order Hermite-Gaussian modes [34,36,39,40]. Here,
we show that quantum-inspired metrology finds application
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in measuring incoherent source superpositions with either
time or frequency offsets using tailored nonlinear optical
interactions and click-counting detection. The tools used
herein reach the quantum limit with single-photon level
signals, but can be described and realized in a completely
classical fashion, requiring no quantum resources and
having equal applicability to quantum and classical signals.
This form of frequency estimation has natural applications
in, e.g., measuring nearly degenerate atomic and stellar
spectral lines, particularly after undergoing inhomogeneous
broadening. Precision time measurements find natural
applications in time-of-flight ranging and in probing ultra-
fast system dynamics.
Quantum-limited measurements.—We formalize the

parameter estimation problem under consideration analo-
gously to the spatial case [14,22]. Two mutually incoherent
(or phase-randomized) light sources with equal intensities
emit at optical frequencies ν0 � sν=2. We assume that the
central frequency ν0 is well known and that the remaining
quantity of interest is the spectral separation, sν. If the
sources have non-negligible spectral bandwidth, the optical
spectrum Iðν; sνÞ of the incoherent mixture as measured on
a spectrometer will be

Iðν; sνÞ ¼
1
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where ψðνÞ is the spectral amplitude shape. For specificity,
we focus on the case of Gaussian spectral amplitudes
(frequency-domain point-spread functions) with root-
mean-square (rms) widths σν, such that
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The standard method of estimating the spectral separa-
tion sν in the low-luminescence (i.e., photon counting)
regime would be to measure the spectral intensity Iðν; sνÞ
on a spectrometer, such as a Fabry-Perot interferometer or
grating-based spectrograph, and use a fitting or deconvo-
lution algorithm on the integrated photon counts. We
quantify the amount of information in principle available
to estimate sν with N detected photons (i.e., standard
intensity click-counting detection) via the Fisher informa-
tion F std, given by

F std ¼ N
Z
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The Fisher information quantifies how sensitive the mea-
sured quantity Iðν; sνÞ is to changes in the variable sν, and
can be used to construct the CRLB as VarðŝνÞ≥1=F std [9],
which defines the absolute minimum mean-squared
error (variance) of the estimated separation, ŝν. For large
separations, sν ≫ σν, the standard Fisher information is

constant, providing a Cramér-Rao bounded variance of
VarðŝνÞ ≥ ð4σ2νÞ=N. However, when sν ∼ σν, the CRLB
bound grows dramatically, diverging as sν=σν approaches
zero. This behavior is known as Rayleigh’s curse in the
spatial domain, and is sometimes rephrased as the Taylor
criterion in spectral measurements. Note that the exact
same “curse” applies to estimating incoherent time sepa-
rations, st, between two pulsed sources through direct
timing measurement, e.g., with autocorrelation or streak-
camera techniques [41].
The curse can be lifted by performing phase- or parity-

sensitive measurements, even though the source fields
themselves have no coherent phase relationship. An opti-
mal measurement basis is always provided by the partial
derivatives of the amplitude point-spread function [21].
For the Gaussian point-spread function as in Eq. (2),
the optimal measurement is then the Hermite-Gaussian
basis [21,22]. For separations sν ≲ σν, sν can be estimated
with only projections onto the first two Hermite-Gauss
modes, expressed as

ð4Þ

If projective measurements onto these modes can be
realized, the estimator ŝν has a curse-free performance,
with VarðŝνÞ ≥ ð4σ2νÞ=N for arbitrarily small values of sν.
This value agrees exactly with the absolute quantum limit
derived from the quantum Fisher information [14]. To
include estimation of the centroid, extend the technique to
large separations sν ≫ σν, or, in cases with unequal-
intensity emission, higher-order mode projections may
be used to maintain an advantage over standard intensity
measurements [42].
Time-frequency mode selection.—The key experimental

requirement to enable this advantage is mode-selective
projective measurement in the time-frequency domain. We
implement such measurements using a technique known as
the quantum pulse gate [43–47], a sum-frequency process
where a weak input signal is mixed with a spectrally shaped
pump pulse to create an upconverted signal in a long,
nonlinear waveguide. To implement a quantum pulse gate,
the input signal and pump pulses must have matched group
velocities and the walkoff between the input and upcon-
verted signals must be longer than the length of the input
pulses. If these conditions are met, the probability of an
upconversion event in the low-efficiency regime given an
input spectral amplitude ψðνÞ and a pump amplitude αðνÞ
can be expressed simply as [43,47]

Pα ∝
����
Z

dναð−νÞψðνÞ
����
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Measuring the upconverted pulse power thereby corre-
sponds to a projective measurement on the broadband time-
frequency mode defined by the shape of the pump pulse,
α�ð−νÞ [46]. By counting photons in the upconverted mode
while projecting on either the fundamental Gaussian mode
or the first-order Hermite-Gaussian mode, we can easily
construct an estimator by taking their ratio.
The mode selectivity of the quantum pulse gate is limited

by the group-velocity walkoff between the input and
upconverted signals, which we define by the walkoff
parameter Δ ¼ L=2ð1=uin − 1=uoutÞ, where uj is the group
velocity and L is the length of the nonlinear interaction.
This walkoff defines the phase matching conditions of the
interaction, imposing a rms bandwidth of the upconverted
light of σPM ≈ 0.18=Δ. When the input and pump are
significantly broader than the phase matching bandwidth
and the side lobes arising from the sinc-shaped phase
matching curve are filtered out, the ratio of the lowest-order
Hermite-Gaussian projections is given by

ð6Þ

where σt and σν are the rms widths of the measurement
pulse’s temporal and spectral profiles; a derivation of this
result is presented in the Supplemental Material [48]. If the
signal is properly aligned in one of the 2 degrees of freedom
(sν¼0 or st¼0) and sν=σν≫σPM=σν or st=σt≫σPM=σν,
Eq. (6) shows that the square root of the ratio of projection
probability for the first two Hermite-Gauss modes can be
used as an exact estimator for the separation between
the signals. For separations small enough that the finite
phase matching bandwidth cannot be completely neglected,
Eq. (6) can still be inverted to construct an estimator ŝν or
ŝt, although with slightly reduced precision relative to the
quantum limit. As the phase matching bandwidth can be
much smaller than the input bandwidths [49], the precision
of this method can be considerably finer than the broad
bandwidth or temporal durations of the pulses being
interrogated.
Experiment.—In our experimental apparatus, sketched in

Fig. 1, we generate shaped input signal and pump pulses
from a Ti:sapphire laser and optical parameter oscillator
(OPO) with a repetition rate of 80 MHz. The strong pump
pulses at 875 nm are shaped into Hermite-Gauss modes
with a bandwidth of 1.3 nm full width at half maximum
(FWHM) using a 4f line with a spatial light modulator
(SLM) at the focal plane, with approximately 2 mW
coupled into the quantum pulse gate.
To create frequency- and time-shifted pulses, we

carve Gaussian signals with intensity rms widths of σν ¼
182� 2 GHz from the approximately 3 THz FWHM
emission of the OPO using a commercial pulse shaper
(Finisar 4000S). Frequency shifts are imparted straightfor-
wardly by carving different parts of the OPO spectrum,

while time shifts are imparted by programming linear
spectral phases with the pulse shaper. The width of the
pulses in time was measured to be σt ¼ 387� 13 fs using
the quantum pulse gate as an autocorrelator. Neutral density
filters were used to attenuate the shaped pulses to approx-
imately 1.1 photons per pulse coupled into the measurement
waveguide. The incoherence of the time- and frequency-
separated mixtures was assured by switching between
positive and negative shifts andmixing themeasured results.
The quantum pulse gate was realized by combining the

shaped input and pump pulses on a dichroic mirror and
coupling them into a 17 mm-long and 7-μm-wide periodi-
cally poled lithium niobate (PPLN) waveguide heated to
470 K with a poling period of 4.4 μm and single-mode
propagation at 1540 nm. The spectra of the upconverted
light at 558 nm was cleaned with a 4f line to remove phase
matching side lobes, resulting in an upconverted bandwidth
of σPM ¼ 28 GHz, a factor of 6 smaller than the input light.
To reduce background noise due to detector dark counts,
the upconverted signal was measured with an avalanche
photodiode in coincidence with a clock pulse from the Ti:
sapphire sampled down by a factor of 50, resulting in an
effective experimental repetition rate of 1.6 MHz.
Results and discussion.—Twenty separations ranging

from 0–2σ were programmed in both time and frequency
during the experiment and each setting was measured 60
times. In addition to controlling the separation, the pulse
shaper was also used to attenuate the weak input signal to
100%, 50%, or 25% of its original intensity, to demonstrate
the lack of any bias due to background noise. The uncor-
rected estimator from Eq. (6) is shown in
Fig. 2. The estimator is seen to reach the expected linear

FIG. 1. Experimental setup.—We carve signal pulses with
shifting center frequencies and time delays from an attenuated
broadband Ti:sapphire OPO pulse at 1540 nm using a commer-
cial telecommunications pulse shaper. We shape pump pulses at
875 nm into Hermite-Gaussian shapes using a 4f line with a
spatial light modulator (SLM). We then mix the pump and signal
pulses in a PPLN waveguide, separate the sum-frequency signal
with a 4f bandpass filter (BP), and count photons using an
avalanche photodiode gated by a clock pulse from the Ti:
sapphire.
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behavior for separations on the same order as the rmswidths,
but the imperfect mode selectivity causes small, predictable
deviations for very small separations. The observed extinc-
tion ratio between the first- and zeroth-order Hermite-Gauss
mode when no separation is programmed is found to be

, corresponding to a
minimum estimator value of ŝmin ¼ 0.144� 0.005.
To construct an unbiased estimator resilient to the

imperfect selectivity of our device, we use calibration data

from projections onto the first three Hermite-Gauss modes
to perform measurement tomography of our technique.
Details on the tomography techniques are presented in the
Supplemental Material [48]. To demonstrate the precision
of our technique, in Fig. 3, we show the variance of the
calibrated estimator VarðŝÞ for both time and frequency
measurements while varying the total number of detection
events, alongside the standard and quantum CRLBs for the
same number of detected photons. The variance is above
the quantum limit (in red), owing to mode-selectivity
limitations and instabilities. However, it remains below
the intensity-only bound 1=F std for separations well below
the point-spread function widths, with an improvement in
precision by a factor of as high as ten for small separations.
The CRLB shown in Fig. 3 is based on the total number

of detected photons, effectively postselecting on successful
upconversion and neglecting lost photons. If we assume the
loss is uniformly distributed across all inputs and projec-
tions, the advantage over intensity measurement per photon
counted remains valid. We estimate the efficiency of our
measurement apparatus by projecting onto the fundamental
Gaussian mode for a signal with no temporal or spectral

(a)

(b)

FIG. 2. Raw estimator from time-frequency mode selection.—
The estimator calculated from the measured counts when mixing
frequency- or time-shifted pulses is shown above, in (a) and
(b) respectively. The solid black lines correspond to the theo-
retical expectation given the measured phase matching band-
width, and the dashed line to the ideal slope-one estimator. The
error in the theory curves corresponds to instrument setting and
bandwidth characterization uncertainty. In both cases, limitations
are encountered for separations below 0.2σ, as expected from the
mode selectivity of the device. The insets on the frequency-
measurement plot (a) provide the spectra of the individually
shifted signals (dashed) and their incoherent mixture (solid) for
programmed separations of sν ¼ 0.42σ and 1.67σ.

(b)(a)

FIG. 3. Variance of the estimator against the standard
bound.—The variance (mean-squared error) of the estimator ŝ
as the (a) frequency separation sν or (b) time separation st is
increased. The photon-counting measurements consist of a total
of 20 000, 10 000, and 5000 detection events, from top to bottom.
The blue-filled area corresponds to the CRLB for standard
intensity detection, and the red dashed line to the quantum limit
for the same number of detected photons. Red data points
correspond to the variance of the estimator after measurement
tomography. The inset shows the estimator after measurement
tomography.
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offset. The overall efficiency, including upconversion,
spectral isolation, fiber coupling, and photon detection,
is approximately 0.7%. From the depletion of the 1540 nm
signal, we isolate the efficiency of the upconversion process
as approximately 18%. Notably, no sources of loss are
fundamental to the principle of our technique. Photon
detection and coupling loss are factors in both our scheme
and direct intensity detection. The spectral isolation of the
upconverted signal can be made redundant through domain
engineering of the nonlinear medium, removing (apodiz-
ing) the side lobes of the sinc-shaped phase matching
function [50]. Finally, it is possible to reach unit upcon-
version efficiency while maintaining mode selectivity using
multiple-stage versions of the quantum pulse gate [51].
The above results clearly demonstrate thatmode-selective

time-frequency measurement can be exploited for precision
parameter estimation problems where intensity measure-
ments fail. Notably, the absolute time and frequency scales
accessible are not strongly dependent on the scale of the
measurement pulses, but rather the material properties,
namely the phase matching bandwidth σPM. In our realiza-
tion, this corresponded to time and frequency scales of 200 fs
and 100 GHz, respectively. The accessible time and fre-
quency scales could be improved either along with the
conversion efficiency by increasing the nonlinear interaction
length, or at the expense of the detection rate through
narrow-band filtering of the upconverted signal. Alternative
methods based on mode-selective atomic or solid-state
Raman memories could provide greater sensitivity, particu-
larly in the frequency domain [52,53]. Techniques based on
homodyne detection can also provide the necessary mode
selectivity in the time-frequency domain [34,54,55].
We have demonstrated that parameter estimation in the

time-frequency domain can benefit greatly from quantum-
inspired techniques and analysis. By exploiting time-
frequency mode-selective measurement enabled by
waveguided nonlinear interactions, we have shown that
sub-pulse-width separations can be estimated with precision
below the standard CRLB. By adapting these techniques to
different scales, this method could find immediate practical
use in atomic and stellar spectral characterization and time-
of-flight imaging. Future work will explore different mode-
selective systems to adapt to specific tangible metrological
problems and apply higher-order projections to multipara-
meter estimation protocols.

We thank K. Bonsma-Fisher, O. Di Matteo, J. Gil-López,
M. Allgaier, C. Fabre, N. Treps, and B. Brecht for fruitful
discussions. This research has received funding from the
European Unions (EU) Horizon 2020 research and innova-
tion program under Grant Agreement No. 665148, theGrant
Agency of the Czech Republic (Grant No. 18-04291S),
Palacký University (Grant No. IGA-PrF-2018-003), and the
Spanish MINECO (Grant No. FIS2015-67963-P). J. M. D.
gratefully acknowledges support from Natural Sciences and
Engineering Research Council of Canada.

*john.matthew.donohue@uni-paderborn.de
[1] H. Cramér, Mathematical Methods of Statistics (Princeton

University Press, Princeton, NJ, 1946).
[2] R. C. Rao, Bull. Calcutta Math. Soc. 37, 81 (1945).
[3] E. J. Farrell, J. Opt. Soc. Am. 56, 578 (1966).
[4] T. Orhaug, Opt. Acta 16, 75 (1969).
[5] C. W. Helstrom, J. Opt. Soc. Am. 60, 233 (1970).
[6] C. W. Helstrom, J. Opt. Soc. Am. 60, 659 (1970).
[7] J. Zmuidzinas, J. Opt. Soc. Am. A 20, 218 (2003).
[8] R. Holmes, B. Calef, D. Gerwe, and P. Crabtree, Appl. Opt.

52, 5235 (2013).
[9] L. Motka, B. Stoklasa, M. D’Angelo, P. Facchi, A.

Garuccio, Z. Hradil, S. Pascazio, F. V. Pepe, Y. S. Teo, J.
Rehacek, and L. L. Sanchez-Soto, Eur. Phys. J. Plus 131,
130 (2016).

[10] E. Bettens, D. Van Dyck, A. J. den Dekker, J. Sijbers, and A.
van den Bos, Ultramicroscopy 77, 37 (1999).

[11] S. Ram, E. Sally Ward, and R. J. Ober, Proc. Natl. Acad. Sci.
U.S.A. 103, 4457 (2006).

[12] J. Chao, E. Sally Ward, and R. J. Ober, J. Opt. Soc. Am. A
33, B36 (2016).

[13] R. A. Fisher, Math. Proc. Cambridge Philos. Soc. 22, 700
(1925).

[14] M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033
(2016).

[15] R. Nair and M. Tsang, Phys. Rev. Lett. 117, 190801
(2016).

[16] R. Nair and M. Tsang, Opt. Express 24, 3684 (2016).
[17] M. Tsang, New J. Phys. 19, 023054 (2017).
[18] M. Tsang, J. Mod. Opt. 65, 1385 (2018).
[19] D. Petz and C. Ghinea, in Quantum Probability and

Related Topics (World Scientific, Singapore, 2011), Vol. 27,
pp. 261–281.

[20] C. Lupo and S. Pirandola, Phys. Rev. Lett. 117, 190802
(2016).

[21] J. Rehacek, M. Paúr, B. Stoklasa, Z. Hradil, and L. L.
Sánchez-Soto, Opt. Lett. 42, 231 (2017).

[22] M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and
J. Rehacek, Optica 3, 1144 (2016).

[23] F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I.
Lvovsky, Optica 3, 1148 (2016).

[24] F. Yang, R. Nair, M. Tsang, C. Simon, and A. I. Lvovsky,
Phys. Rev. A 96, 063829 (2017).

[25] W. K. Tham, H. Ferretti, and A. M. Steinberg, Phys. Rev.
Lett. 118, 070801 (2017).

[26] C. V. Bennett, R. P. Scott, and B. H. Kolner, Appl. Phys.
Lett. 65, 2513 (1994).

[27] V. Torres-Company, J. Lancis, and P. Andrés, Prog. Opt. 56,
1 (2011).

[28] R. Salem, M. A. Foster, and A. L. Gaeta, Adv. Opt.
Photonics 5, 274 (2013).

[29] L. Cohen, Time–Frequency Analysis (Prentice-Hall,
New York, 1995).

[30] S.Qian andD.Chen, IEEESignal Process. Lett. 16, 52 (1999).
[31] E. Sejdić, I. Djurović, and J. Jiang, Digit. Signal Process. 19,

153 (2009).
[32] S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed.

(Elsevier, New York, 2009).
[33] I. Juvells, A. Carnicer, J. Ferré-Borrull, E. Martín-Badosa,
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