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Quantum anomalies lead to finite expectation values that defy the apparent symmetries of a system.
These anomalies are at the heart of topological effects in electronic, photonic, and atomic systems, where
they result in a unique response to external fields but generally escape a more direct observation. Here, we
implement an optical-network realization of a discrete-time quantum walk, where such an anomaly can be
observed directly in the unique circular polarization of a topological midgap state. We base the system on a
single-step protocol overcoming the experimental infeasibility of earlier multistep protocols. The evolution
combines a chiral symmetry with a previously unexplored unitary version of supersymmetry. Having
experimental access to the position and the coin state of the walker, we perform a full polarization
tomography and provide evidence for the predicted anomaly of the midgap states. This approach opens the
prospect to dynamically distill topological states for quantum information applications.
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Introduction.—Quantum anomalies take a privileged
position amongst fundamental physics as they equip
quantum systems with robust topological effects. The
historic backdrop for quantum anomalies is provided by
the Atiyah-Singer index theorem for the Dirac operator [1],
which states that the difference of zero modes with positive
and negative chirality is a topological invariant. These zero
modes are of fundamental significance not only because
of their robustness against smooth deformations, but also
since their definite chirality defies an apparent symmetry of
the system, which results in an anomalous response to
symmetry-breaking external fields. An early practical
realization is the Su-Schrieffer-Heeger model for polyace-
tylene [2], where the anomalous properties of a midgap
state result in charge fractionalization and spin-charge
separation [3]. Interest in this phenomenon therefore
quickly transcended the original setting of continuum
and lattice field theories [4], and presently provides a
major motivation for research particularly in electronic
[5–8], superconducting [8–11], photonic [12–25], and
ultracold atomic [26–30] systems. In all these settings,
zero modes represent symmetry-protected midgap states
with unique finite expectation values of a relevant sym-
metry operator, resulting in a distinct response when probed
by suitable external fields. This includes the formation of
anomalous currents, as recently observed in Dirac andWeyl
semimetals [31,32]. An equally early development was the
relation of such anomalous behavior to supersymmetry. In
this case systems appear with partners that differ in the
number of zero modes, with the prime example being a
Dirac particle exposed to a magnetic field [33,34]. This
feature is central to field-theoretic descriptions, but has
been much less inquired in practical systems.

In this work we exploit this link via a previously unex-
plored variant of supersymmetry for the time-evolution
operator and achieve the direct observation of the anomalous
expectation value of a zero mode, without the need of an
external probe, in a topological discrete-time quantum
walk [35–46] implemented by a weak coherent laser pulse
propagating in a time-multiplexing optical fiber network
[47,48]. In contrast to proposed and experimentally realized
split-step and multistep protocols in coined quantum walks
[35–45] involving two or more experimental step operations
to implement one application of the quantum walk unitary,
our protocol exhibits a single-step dynamic in which each
experimental step directly corresponds to one step of the
protocol, which is favorable in terms of losses, resource
management, and scalability. The combination of chiral
symmetry with supersymmetry results in a topologically
nontrivial gapped band structure exhibiting four symmetric
bands along the quasienergy circle, revealing a topological
structure on a three-dimensional torus. These topological
features directly relate to an internal degree of freedom, the
coin state of the random walker, which is embodied in the
polarization of the laser pulses. While in a suitable basis
states originating from the bands exhibit linear polarization,
a system with an interface of two topologically distinct
systems also containsmidgap stateswhose polarization turns
out to be circular. This is the direct manifestation of the
anomaly in question. We observe this effect experimentally
by performing polarization tomography of the localized
output state, as well as by altering the overlap of the input
and the midgap state via polarization control.
Single-step quantum walk protocol.—The quantum walk

protocol and its experimental realization are illustrated in
Fig. 1. The state
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jΨti ¼
X

x∈Z;c∈fH;Vg
Ψx;cðtÞjx; ci ð1Þ

of the quantum walker is defined by the discrete positions x
and the coin state c, which in our experiments is realized
via a train of weak coherent laser pulses and their
polarization (H for horizontal, V for vertical). The initial
pulse is spatially localized on site x ¼ 1 with a preset input
polarization. This state changes over a time step via the
application of position-dependent coin operation,

ĈðφxÞ ¼
X

x

jxihxj ⊗
�

cosðφxÞ −i sinðφxÞ
−i sinðφxÞ cosðφxÞ

�
; ð2Þ

rotating the polarization in the H=V basis, followed by a
step operation,

Ŝ ¼
X

x

ðjxþ 1ihxj ⊗ jHihHj þ jx − 1ihxj ⊗ jVihVjÞ;

ð3Þ

resulting in a unitary evolution governed by U ¼ Ŝ ĈðφxÞ.
In the following we consider the bulk configuration, in
which the coin angles φ1 and φ2 are alternately applied
from site to site, and the interface configuration in which a
semi-infinite chain with alternatingφ1 andφ2 is connected at
x ¼ 1 to a chain with alternating φ2 and φ1 [see Fig. 1(a)].
Supersymmetry in quantum walks.—We first identify the

hidden supersymmetry in the quantum walk, and then use
this to predict the anomalous properties of the zero mode in
the interface configuration. As is typical in the study of
topological systems, the key is to connect the features of
the zero mode to symmetry constraints of the infinitely
periodic bulk system, which we here cast in terms of a

unitary variant of supersymmetry that leads to an enlarged
set of topological winding numbers.
Previous work considered the bulk system to be periodic

after two round-trips, so that each wave packet has visited
both coins. The hidden symmetry becomes apparent when
we consider a single round-trip, but follow the amplitudes
in a two-site unit cells [blue in Fig. 1(a)], where each site
carries two polarizations. Applying Floquet-Bloch theory
[35,38,49], this gives rise to a four-dimensional unitary
evolution parametrized by a wave number k, which is of
the explicit form

uðkÞ ¼
 

0 σxf−kσxĈðφ2Þ
fkĈðφ1Þ 0

!

≡
�

0 u12ðkÞ
u21ðkÞ 0

�
;

fk ¼
�
1 0

0 expðikÞ

�
: ð4Þ

Here the blocks (with Pauli matrix σx) operate on the
polarization degree of freedom on a given site.
The bulk bandsΨðkÞ are stationary under the application

of this evolution, uðkÞΨðkÞ ¼ λðkÞΨðkÞ, where λðkÞ ¼
exp½−iϵðkÞ� is a propagation factor that can be cast in
terms of quasienergies ϵðkÞ. These quasienergies play the
role of the band structure known from autonomous settings,
but are to be taken modulo 2π. For the Floquet-Bloch
operator Eq. (4) the bands are determined by the condition
Re½λ2ðkÞ� ¼ cosðφ1Þ cosðφ2Þ cosðkÞ − sinðφ1Þ sinðφ2Þ. A
sample band structure, folded around the unit circle, is
shown in Fig. 1(d). We note that the four bands are related
by λ1ðkÞ ¼ λ�2ðkÞ ¼ −λ3ðkÞ ¼ −λ�4ðkÞ, and separated by
gaps at λ ¼ �1 and λ ¼ �i.
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FIG. 1. Supersymmetric single-step quantum walk realizing an interface between two topologically distinct phases. (a) Coin structure
in the interface configuration, where each disk represents the action of a coin that rotates the polarization by the denoted angles φ1 or φ2.
Across the interface the positions of these coins in the unit cells (red and blue boxes) are interchanged. (b) Alternating circular
polarization of the spatially localized midgap states trapped by the interface. The fading of the color strength away from the interface
indicates the intensity decay of the localized midgap state. All extended states display a linear polarization (not shown). (c) Winding of
states from the bands around the three-dimensional torus (α, β, γ), revealing the topological structure of the supersymmetric quantum
walk on both sides of the interface. (d) Quasienergy band structure λðkÞ ¼ exp½−iϵðkÞ� comprising four symmetric bands (colored arcs,
here shown for φ1 ¼ 1, φ2 ¼ 0.2). We realize the midgap states pinned to λ ¼ �i (red dots). (e) Experimental setup using a time-
multiplexing optical fiber loop; see text for details.
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It is clear that these bulk features should arise from
general properties of the system. Their topological origin
becomes manifest in the symmetric basis,

jH0i ¼ cosðφ=2ÞjHi þ i sinðφ=2ÞjVi;
jV 0i ¼ cosðφ=2ÞjVi þ i sinðφ=2ÞjHi; ð5Þ

in which the Floquet-Bloch operator reads

u0ðkÞ¼
 

0 Ĉðφ1

2
Þσxf−kσxĈðφ2

2
Þ

Ĉðφ2

2
ÞfkĈðφ1

2
Þ 0

!
: ð6Þ

This displays the two symmetries u0†ðkÞ ¼ σyu0ðkÞσy,
where the Pauli matrix σy operates on the polarization
degrees of freedom, as well as u0ðkÞ ¼ −Σzu0ðkÞΣz, where
the Pauli matrix Σz operates on the two positions in the
unit cell [49]. The symmetry induced by σy constitutes a
conventional chiral symmetry for a Floquet operator
[35,38] and constraints its eigenvalues to occur in pairs
ðλ; λ�Þ, hence quasienergies ðϵ;−ϵÞ, protecting the gaps at
λ ¼ �1. The additional symmetry induced by Σz con-
straints eigenvalues to occur in pairs ðλ;−λÞ, hence qua-
sienergies ðϵ; ϵþ πÞ, and does not have a counterpart in
previous investigations.
To identify its origin, we notice that according to

u2ðkÞ ¼
�
u12ðkÞu21ðkÞ 0

0 u21ðkÞu12ðkÞ

�
; ð7Þ

upon iteration the Floquet-Bloch evolution Eq. (4) separates
into two partner problems, u12ðkÞu21ðkÞ and u21ðkÞu12ðkÞ,
which happen to recover the previously employed split-step
protocols [35,36,38]. This reduction of a problem with
symmetries into two partner problems provides a unitary
analogy to the concept of supersymmetry for autonomous
Hamiltonians of the form [33,34,49,54]

H¼
�
0 A†

A 0

�
and hence H2 ¼

�
A†A 0

0 AA†

�
; ð8Þ

where A†A and AA† represent the supersymmetric partners
[55]. In this light, we will call the symmetry induced by Σz
unitary supersymmetry.
Ramifications.—While for Hamiltonians of the form

Eq. (8) the constraint ΣzHΣz ¼ −H coincides with a chiral
symmetry, in the Floquet setting the constraints induced by
chiral symmetry and unitary supersymmetry are indepen-
dent and inequivalent, and in combination protect the gaps
at λ ¼ �i. In consequence, the two partner problems
exhibit the same spectrum; however, they constitute topo-
logically distinct phases as they are separated by transitions
where the gaps at λ ¼ �i close.
The topological distinction can be asserted by translating

these spectral constraints to constraints on the bulk wave

functions. For our study of particular relevance is the
condition hΣzσyi ¼ 0 unless λ ¼ �i, which follows from

0 ¼ ψ†ðΣzσyu0 þ u0†ΣzσyÞψ ¼ ðλþ λ−1Þψ†Σzσyψ : ð9Þ

By similar arguments we can derive the conditions
hσyi ¼ hΣzi ¼ 0, which generally apply when λ ≠ �i,
�1 [49]. Physically, the symmetry constraints hσyi ¼
hΣzσyi ¼ 0 imply a linear polarization of the bulk Bloch
states in the H0=V 0 basis. Mathematically, these conditions
confine the states to geometrically wind around a three-
dimensional torus defined by three angles (α, β, γ),

( cosðαÞ; sinðαÞ) ¼ (hσxð1þ ΣzÞi; hσzð1þ ΣzÞi);
( cosðβÞ; sinðβÞ) ¼ (hσxð1 − ΣzÞi; hσzð1 − ΣzÞi);
( cosðγÞ; sinðγÞ) ¼ (hΣxð1 − σyÞi; hΣyð1 − σyÞi); ð10Þ

as shown in Fig. 1(c).
In the interface configuration, two regions with incom-

patible winding topology are joined together [58]. Applying
the bulk-boundary principle [39,49,59], the interface con-
figuration is then guaranteed to supplement the extended
bulk states by spatially confined midgap states, which
furthermore are expected to display anomalous finite
expectation values of the relevant symmetry operators. In
our setting, this results in a pair of midgap states pinned to
λ ¼ �iwith finite hΣzσyi ¼ −1, which thus display with an
anomalous finite circular polarization that alternates from
site to site [see Fig. 1(b)]. This is the polarization anomaly
that we now set out to detect experimentally.
Experimental implementation.—In the experiments [see

Fig. 1(e)], the position-dependent coin operations are
realized by a Soleil-Babinet compensator and a fast switch-
ing electro-optic modulator (red shaded area) [42,48,50].
The shift operation is performed in the well-established
time-multiplexing scheme by splitting up the two polari-
zation components at a polarizing beam splitter and routing
them through fibers of different lengths (blue shaded area)
[47,48]. The out-coupled pulses are measured with ava-
lanche photodiodes in the three bases (H=V, diagonal, and
circular), giving access to the complete polarization state at
each site of the walk. This detection scheme enables us to
observe the polarization-resolved time evolution of the
walker and perform a full polarization tomography of the
midgap state [49].
Results: Light trapping in interface and bulk.—We

compare a bulk configuration, in which the coin angles
alternate between the values φ1 ¼ 1.29, φ2 ¼ 0.17, with
an interface configuration, in which the coins are inter-
changed in half of the system [see Fig. 1(a)]. The bulk
configuration only supports spatially extended states,
which are organized in quasienergy bands λðkÞ ¼
exp½−iϵðkÞ� [see Fig. 1(d)]. However, in the interface
configuration there additionally exist midgap states

PHYSICAL REVIEW LETTERS 121, 260501 (2018)

260501-3



pinned to λ ¼ �i, which are spatially localized around the
interface. In the experiments, the difference between the
bulk and interface configurations is analyzed in detail in
Fig. 2. Here, we compare the two configurations for
different input polarizations of the initial excitation at
x ¼ 1, and study how it spreads over the system. The
difference between both systems is immediately visible.
The midgap state, which we expect to be centered at the
interface between sites x ¼ 0 and 1, can trap the initial
wave packet [see Figs. 2(a) and 2(b)]. This effect displays
a strong polarization dependence, and is particularly
pronounced for H input polarization. In contrast, the bulk
configuration [Figs. 2(c) and 2(d)] traps a much smaller
amount of light, which displays a much weaker polari-
zation dependence. The polarization dependence is further
quantified in Fig. 2(e). Here, we record the detection
probability of the quantum walker after 13 steps at the
x ¼ 0 position while varying the angle of a quarter wave
plate (QWP) in front of the in-coupler. For the interface
system large variations of the trapped light component can
be observed, ranging from below 0.3 up to 0.82 (black
symbols). The experimentally observed polarization
dependence agrees well with the results of numerical
simulations (solid orange curve), which model the quan-
tum walk in detail [49]. In the bulk system (green symbols
and curves) the range of the polarization-dependent
variations is much less pronounced. We extrapolate these
results to large step numbers numerically (dashed curves),
where a pronounced polarization dependence only
remains for the interface configuration. We also analyzed
the position dependence of the trapping when exciting the
walk not directly at the interface, but scan different input
positions (see Fig. S2 in Ref. [49]). For the polarization-
resolved probability histograms demonstrating the spatial
localization of the midgap state, see Fig. S1 in Ref. [49].
These observations uncover a strong and characteristic
polarization dependence of the excitability of the midgap
state.
Results: Detection of the quantum anomaly.—In order to

demonstrate the anomalous polarization of the midgap
state precisely, we measure the full polarization state of
the walker after 17 steps on site x ¼ 0 by performing a
tomographic measurement [49]. The experimental data
presented in Fig. 3 provide the density matrix of the state
ð0.70 � 0.03ÞjH0i þ ð0.71 � 0.02Þ exp½ð0.47 � 0.02Þiπ�j
V 0i at x ¼ 0, which is in excellent agreement with the
expected right-handed circular polarization

ffiffiffiffiffiffiffiffi
1=2

p ðjH0i þ
ijV 0iÞ on the even sites. Analogously, we find left-handed
circular polarization

ffiffiffiffiffiffiffiffi
1=2

p ðjH0i − ijV 0iÞ on the odd sites
(see Fig. S3 in Ref. [49]). These results verify the
anomalous expectation values directly, without relying
on currents induced by symmetry-breaking external fields.
Discussion.—In conclusion, we designed a quantum

walk that displays a distinctly polarized midgap state.
This allowed us to directly observe an anomalous feature

of a topological zero mode, a fundamental feature that
underpins topological physics in a wide range of settings.
In our realization the midgap state is spatially localized
at the interface of two topologically distinct systems and
situated in a quasienergy band gap that arises from the
combination of chiral symmetry and previously unexplored
unitary supersymmetry. In a suitable basis, this gives rise to
a circular polarization of the localized midgap state. In
contrast, the bulk states are linearly polarized and spatially
extended. We demonstrated how to directly address this
midgap via variation of the input polarization, and char-
acterized it via a full polarization state tomography. The
characteristic polarization serves as an avenue to selectively
excite the midgap state, as well as to separate it from other
eigenmodes by polarization-controlling elements, both of
which are useful features for possible classical and quan-
tum information and communication applications.

FIG. 2. Light trapping for the interface configuration (a),(b)
compared to the interface-free bulk system (c),(d). The exemplary
input polarizations are jHi in (a) and (c), CQWPð137°ÞjHi in (b),
and CHWPð50°ÞjHi in (d), as defined in Eqs. (S17) and (S18) of
Ref. [49]. The dependence of the trapped light intensity on the
initial polarization is further characterized in (e) for interface
(orange lines, black dots) and bulk (green lines and symbols)
configuration. It shows the total intensity after step 13 at position
0 as a function of the initial polarization set by the angle α of the
QWP in front of the in-coupler (vertical ticks indicating error
bars, experimental data; continuous curves, numerical prediction
for 13 steps; dashed curve, numerical prediction for 100 steps).
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