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The time-frequency degree of freedom is a powerful resource for implementing high-dimensional quantum in-
formation processing. In particular, field-orthogonal pulsed temporal modes offer a flexible framework compatible
with both long-distance fiber networks and integrated waveguide devices. In order for this architecture to be
fully utilized, techniques to reliably generate diverse quantum states of light and accurately measure complex
temporal waveforms must be developed. To this end, nonlinear processes mediated by spectrally shaped pump
pulses in group-velocity engineered waveguides and crystals provide a capable toolbox. In this review, we examine
how tailoring the phase-matching conditions of parametric downconversion and sum-frequency generation allows
for highly pure single-photon generation, flexible temporal-mode entanglement, and accurate measurement of
time-frequency photon states. We provide an overview of experimental progress towards these goals and summa-
rize challenges that remain in the field. © 2018Optical Society of America under the terms of the OSAOpen Access Publishing
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1. INTRODUCTION

In any implementation of quantum information protocols, it is
necessary to have access to information-carrying modes that
are individually manageable and measurable in arbitrary bases.
In optical implementations, it is often essential to be able to create
photonic quantum states with a controlled degree of entangle-
ment and to retain coherence among the modes over long-
distance transmission. In polarization, state rotations and
measurements are simple with wave plates and polarizing beam
splitters, and entangled sources are straightforward to implement,
but the dimensionality is limited to two. In the spatial degree of
freedom, entanglement is naturally present in a high-dimensional
basis of, for example, orbital angular momentum modes, and
arbitrary measurements can be made with spatial light modula-
tors. However, their complex spatial structures render them
incompatible with spatially single-mode integrated devices and
optical fiber networks.

Alternatively, the time-frequency (or energy-time) degree of
freedom can be exploited by encoding quantum information
in photonic temporal modes (TMs). Here, the information is
encoded in the complex time-frequency amplitude of the electric
field of single photons. Like spatial encodings, the Hilbert space
available in the Fourier-conjugate time and frequency domains is,
in principle, unbounded, allowing for high-dimensional encod-
ings. Unlike spatial encodings, time-frequency encodings are

intrinsically compatible with waveguides and fiber transmission.
Temporal-mode bases can take on a variety of forms, such as
discrete time or frequency bins or intensity-overlapping pulsed
temporal modes, as illustrated in Fig. 1, so long as the waveforms
provide an orthonormal basis. However, controlling entangle-
ment between and directly measuring arbitrary temporal modes
presents a significant challenge for time-frequency quantum
information processing.

In this mini review, we will highlight works on both the
targeted generation and manipulation of TMs through control-
ling the group-velocity relationship in nonlinear processes. In
Section 2, we summarize the basic theory behind the TM struc-
ture of photon pairs generated via parametric downconversion
(PDC). Section 3 focusses on efforts towards engineering the
PDC process itself, for both single-mode photon generation
and to create photons with rich, programmable TM structures.
In Section 4, we transfer these techniques from PDC to frequency
conversion, unveiling methods to manipulate and measure the
complex TM structure. Section 5 then summarizes current exper-
imental progress on the manipulation of photonic TMs by means
of frequency conversion, direct temporal manipulation, and tail-
ored light–matter interactions. In Section 6, we overview recent
experimental results, paving the way towards TM-based quantum
applications. Finally, in Section 7, we will give an outlook on
future steps and highlight challenges that will need to be over-
come in the future.
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2. TEMPORAL-MODE STRUCTURE OF
PARAMETRIC DOWNCONVERSION

In this section, we describe the TM structure of photon-pair states
generated in PDC, where a photon from a bright classical pump
pulse decays with a small probability inside a nonlinear optical
medium, e.g., a nonlinear waveguide, into a pair of daughter pho-
tons typically called signal and idler, as sketched in Fig. 2(a). PDC
is a well-understood process, capable of generating photons with a
rich TM structure at room temperature. Moreover, PDC can be
used to generate a plethora of quantum states including heralded
single photons, squeezed states, and maximally entangled states.
These properties have cemented PDC as the workhorse in many
quantum optics laboratories.

Restricting our model to the generation of photon pairs and
assuming spatially single-mode emission, e.g., by realizing the
PDC in a weakly pumped waveguide, the type-II PDC process
can be described by the interaction Hamiltonian

ĤPDC � B
Z

dωsdωif �ωs,ωi�â†�ωs�b̂†�ωi� � h:c:, (1)

and the generated state can be written as

jψiPDC � B
Z

dωsdωif �ωs,ωi�â†�ωs�b̂†�ωi�jvaci, (2)

where â†�ωs� and b̂†�ωi� are standard creation operators that
generate a signal photon at ωs and an idler photon at ωi; B is
the optical gain or efficiency of the process, which includes
the second-order nonlinearity and the pump power; and
f �ωs,ωi� is the complex-valued joint spectral amplitude (JSA),

normalized to
R
dωsdωijf �ωs,ωi�j2 � 1. The JSA describes

the entangled time-frequency structure of the PDC state and
is essential for describing PDC in cases with a broadband pump
pulse [1].

The JSA itself can be written as a product of the pump
envelope function α�ωs � ωi� and the phase-matching function
ϕ�ωs,ωi�, such that

f �ωs,ωi� � α�ωs � ωi�ϕ�ωs,ωi�: (3)

Here, α�ωs � ωi� is the slowly varying envelope of the broad-
band pump and reflects energy conservation during the PDC, and
the phase-matching ϕ�ωs,ωi� expresses the momentum conserva-
tion between involved fields and the dispersion properties of the
nonlinear medium. The phase-matching function can be written as

ϕ�ωs,ωi� �
Z

L

0

dzχ�z� exp�ιΔk�ωs,ωi�z�, (4)

where Δk�ωs,ωi� � kp�ωs � ωi� − ks�ωs� − ki�ωi� is the phase
mismatch, L is the length of the nonlinear medium, and χ�z� �
�1 describes the orientation of the ferroelectric domains of the
crystal. A periodic modulation of χ�z�, with a period Λ, is called
periodic poling [2]. This poling adds an additional component of
the form kQPM � 2π∕Λ to the phase mismatch, such that
Δk�ωs,ωi� ↦ Δk�ωs,ωi� � 2π∕Λ, allowing the center frequen-
cies of the phase-matched process to be tuned. In this case, the
resulting phase-matching function is given by

ϕ�ωs,ωi� �
1

L
sinc

�
Δk�ωs,ωi�L

2

�
eιΔk�ωs,ωi�L2: (5)

The sinc profile of the phase-matching function has significant
implications that will be discussed in Section 3. However, to sim-
plify the equations and plots in this article, we usually employ a
Gaussian approximation of the phase-matching function.

In 2000, Law and co-workers examined the time-frequency
structure of the JSA through the Schmidt decomposition, defining
two-photon entanglement in terms of temporal modes [3]. For
this, the JSA is decomposed into two sets of orthonormal basis
functions fg �s�g and fh�i�g for signal and idler, respectively, and
we write

f �ωs,ωi� �
X
k

ffiffiffiffi
λk

p
g �s�k �ωs�h�i�k �ωi�, (6)

where
P

kλk � 1. With this we define broadband TM operators

(a)

(b) (c) (d) (e) (f)

Fig. 2. Joint spectral amplitude, temporal modes, and Schmidt coefficients of a non-engineered PDC process. (a) Outline of a PDC process with the
three involved fields. (b) The JSA and its marginal distributions which is the product of pump (dashed lines) and phase matching (solid lines) functions
and, in this case, exhibits frequency anti-correlations between signal and idler frequencies. The Schmidt decomposition of this Gaussian JSA is given by
Hermite–Gaussian functions, with the first three TM pairs shown in (c)–(e). (f ) The first seven Schmidt coefficients λk. The decomposition of this
example yields an effective mode number of K ≈ 3.14.

Fig. 1. Temporal-mode encodings visualized in time-frequency space.
Orthogonal temporal mode bases can be constructed through slicing bins
in time or frequency, as in (a) and (b), or through intensity-overlapping
but field-orthogonal pulsed temporal modes, such as the Hermite–Gauss
modes in (c).
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Â†
k �

Z
dωsg

�s�
k �ωs�â†�ωs�, (7)

B̂†
k �

Z
dωih

�i�
k �ωi�b̂†�ωi�, (8)

and consequently obtain

jψiPDC �
X
k

ffiffiffiffi
λk

p
Â†
kB̂

†
kj0i, (9)

where we have postselected on and renormalized for two-photon
emission. This means that given a PDC photon pair is generated,
it is in the kth TM pair with a probability of λk. An example of a
typical JSA together with its Schmidt decomposition is given in
Fig. 2(b). For a typical Gaussian JSA, the Schmidt modes are
given by Hermite–Gauss functions, which overlap in both
spectral and temporal intensity.

The Schmidt decomposition of the joint spectral amplitude
provides an essential link between the continuous time-frequency
description and a discretised temporal-mode picture. Such a tran-
sition is necessary for describing mode-multiplexed systems,
where each Schmidt mode can be thought of as an independent
information carrier. Such multiplexed systems are useful for
communication networks [4] and essential to generate highly en-
tangled cluster states for measurement-based quantum computa-
tion [5–8], where utilizing the time-frequency domain allows for
operations to take place in a single spatial mode. The Schmidt
modes of PDC can be directly connected to the supermodes gen-
erated in a synchronously pumped optical parametric oscillator
(SPOPO), where a degenerate downconversion medium is
pumped below threshold in a cavity matched to the repetition
rate of the driving laser system [9,10]. The eigenmode decompo-
sition of the interaction provides the independently squeezed
supermodes of the system [11,12], and their mixtures have
been experimentally demonstrated to exhibit strong continu-
ous-variable entanglement [13,14].

In the low-gain PDC regime, the Schmidt decomposition of the
JSA can be linked directly to the amount of time-frequency entan-
glement present in the two-photon system. The Schmidt number,
defined as K � 1∕

P
kλ

2
k , quantifies the number of TM pairs re-

quired to describe the properties of the generated state, with K � 1
for a single-mode (separable) state and K ≫ 1 for a multimode
(entangled) state [15–17]. The Schmidt number is related to
the spectral purity of the individual signal photons generated,
which are generally described by the mixed density matrix

ρ̂s � Tri�ρ̂PDC� �
X
k

λkjAkihAkj (10)

with a purity of

Ps � tr�ρ̂2s � �
1

K
: (11)

For PDC-generated photons, this quantity is directly
experimentally accessible through the marginal second-order cor-
relation function (i.e., unheralded signal photons) as g �2��0� �
1� Ps [18–20].

In summary, we have introduced the continuous time-
frequency structure of PDC and connected it to the discrete
TM picture through the Schmidt decomposition. Such analysis
naturally describes the two-photon entanglement from PDC,
the squeezed modes of a pulsed OPO, and the spectral purity
of the generated photons. In most configurations, PDC generates

highly correlated states with a large Schmidt number, yielding
low-purity heralded photons if no additional spectral filtering
is applied. We will shift our focus in the next section to how
proper engineering of the PDC process can overcome this limi-
tation and facilitate the direct generation of pure single photons.

3. PDC ENGINEERING

Although multimode PDC states with the usual frequency anti-
correlations, as shown in Fig. 2, have found many applications in
quantum science [21–23], full control over the modal structure of
the PDC state would make a new range of applications possible.
For example, high-visibility quantum interference between dis-
tinct nodes in a photonic network requires pure PDC sources,
i.e., sources that emit in a single temporal mode. Without
dispersion engineering, intrinsic frequency anti-correlations
between signal and idler are imposed by energy conservation
of the pump, reflected by the −45° angle of the pump function
in the joint spectral amplitude (see Fig. 2), resulting in highly
multimode systems. To realize single-mode PDC, researchers
have tailored the phase-matching function to produce separable
JSAs, allowing for high-quality heralded photons without any
need for additional spectral filtering.

A. Group-Velocity Matching for Single-Mode Emission

At the turn of the millennium, several groups studied the spectral
characteristics of PDC photon pairs and identified a connection
between the photon spectra and the dispersion of the nonlinear
medium [24–26]. It was shown that with properly selected
nonlinear material, polarizations, and photon central frequencies,
the frequency correlations between the signal and idler photons
can be eliminated [27]. Later this work was further developed
in Ref. [16], where the authors showed that the relationship
between the group velocities of interacting fields plays an essential
role in tailoring the phase-matching function ϕ�ωs,ωi� and
consequently the JSA.

To understand the underlying physics, we perform a Taylor
expansion of the phase mismatch (defined in Section 2) up to
the first order. Assuming that the process is perfectly phase
matched at the center frequencies and that group-velocity
dispersion through the nonlinear medium is negligible, we obtain

Δk�ωs,ωi� ≈ �u−1s − u−1p �ωs � �u−1i − u−1p �ωi, (12)

where the uj ≡
∂ωj

∂kj
are the group velocities of the pump, signal, and

idler fields. In this context, it is useful to define the group-velocity
mismatch contrast ξ as

ξ � u−1s − u−1p
u−1i − u−1p

: (13)

The group-velocity mismatch contrast is related to the angle
of the phase-matching function in the �ωs,ωi�-plane by
θPM � −arctan�ξ� [16].

Among all possible group-velocity arrangements, two special
cases received particular attention. In the first case, dubbed asym-
metric group-velocity matching (aGVM), the pump propagates with
the same group velocity as either the signal photon (ξ → 0) or the
idler photon (ξ → ∞). If the pump is group-velocity matched to
the signal photon, the JSA from Eq. (3) is reduced to

f �ωs,ωi� ≈ α�ωs � ωi�ϕ�ωi�: (14)
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As seen in Fig. 3(b), as the phase-matching bandwidth
shrinks to be much narrower than the pump bandwidth, the
JSA becomes more and more separable. The single-modedness
of the system can be increased by using wider pump band-
widths or tightening the phase-matching function with longer
nonlinear interactions [16]. In this scenario, the signal and idler
photon will have drastically different spectral bandwidths.

In the second case, the group velocity of the pump is
exactly between the group velocities of signal and idler (ξ → −1),
referred to as symmetric group-velocity matching (sGVM) or
extended phase matching, which results in a JSA of the form

f �ωs,ωi� ≈ α�ωs � ωi�ϕ�ωs − ωi�: (15)

As seen in Fig. 3(c), if the phase-matching bandwidth equals
the pump bandwidth, the JSA is a perfectly separable circle,

allowing for pure single photons with identical spectral properties.
This phase-matching configuration also allows for two-photon
states with positive spectral correlations (and negative temporal
correlations) when the pump is broader than the phase-matching
function [28–30], useful for certain quantum synchronization
and dispersion-cancellation techniques.

B. Experimental High-Purity Photon Sources

The first experimental demonstrations of separable photon-pair
generation were realized in nonlinear bulk crystals. In these sys-
tems, the spatial and spectral properties of the photon pairs can be
linked during generation, depending on the focus of the pump
and collection optics [31]. In 2007, Torres’s group demonstrated
control over the spectral correlations using this spectral-spatial
coupling for photon pairs at 810 nm generated in LiIO3 [32].
By adapting the spatial mode of the pump, the generated photon
pairs could be tuned from spectrally correlated to separable. This
was verified by a measurement of the joint spectral intensity
(JSI), jf �ωs,ωi�j2.

In 2008, Walmsley’s group demonstrated engineered PDC
under aGVM conditions in a bulk KDP crystal [33] with photon
pairs produced around 830 nm. In addition to JSI measurements,
the authors demonstrated Hong–Ou–Mandel interference [34]
between heralded photons from two different PDC sources with
a visibility of 94.4%.

Also in 2008, Wong’s group designed and analyzed a source of
telecom photon pairs produced under sGVM conditions in peri-
odically poled KTiOPO4 (ppKTP) crystal [35]. To measure cor-
relations, the photons were upconverted in a second nonlinear
crystal by a short gate pulse. By scanning the relative delay of
the photons and the gate, the authors were able to measure
the joint temporal intensity, explicitly showing the possibility
of temporal anti-correlation under sGVM conditions. This dem-
onstrated for the first time that changing the spectral bandwidth
of the pump facilitates control over the time-frequency correla-
tions of the pair photons.

KTP is particularly appealing as a source for dispersion-
controlled photons. As seen in Fig. 3, it exhibits both aGVM
and sGVM conditions at different frequencies. In particular,
through the sGVM condition, it can be used to produce photon
pairs with degenerate spectra in the highly useful telecommuni-
cations wavelength regime. In 2011, researchers at NIST pre-
sented a highly pure and spectrally degenerate telecom PDC
source realized in bulk ppKTP [36], demonstrating the indistin-
guishability of the photon pair through 95% visibility in signal-
idler Hong–Ou–Mandel interference.

To achieve the long interaction lengths necessary for narrow
phase-matching functions, sources in guided-wave media are es-
sential. In addition, the tight field confinement provides signifi-
cant increases in the source brightness, and the spectral and spatial
degrees of freedom are largely decoupled in a waveguide. In 2011,
Silberhorn’s group presented the first separable PDC source in a
waveguide [19], based on rubidium-exchanged ppKTP. The
tight field confinement contributed to a high brightness, with
hn̂PDCi ≈ 2.5 photons per pulse at pump pulse energies as low
as 70 pJ, and the purity of the source was confirmed through both
JSI and g �2� measurements. A further refinement of the source
offered a signal-idler indistinguishability of around 94% con-
firmed with Hong–Ou–Mandel interference, and a photon spec-
tral purity of up to 86.7% was obtained from interfering the

(a)

(b)

(c)

Fig. 3. Three different group-velocity matching condition. The JSA of
each case is plotted on the left side, with the respective group velocities uj
of the pump, signal, and idler fields plotted on the right side. The group
velocities (normalized over the speed of light in vacuum) are exemplary
for TE- and TM-polarized light in a z-cut KTP crystal. (a) Typically
without dispersion engineering, the long-wavelength signal and idler
photons both have a larger group velocity than the pump (ξ > 0).
This leads to a negative phase-matching angle and consequently to a cor-
related JSA as shown on the left. In this example, ξ ≈ 0.4. (b) In the case
of aGVM (ξ → 0), one photon (here the signal) propagates at the same
velocity as the pump. This yields a phase-matching function that is
aligned with the signal or idler frequency axis. If the pump spectral band-
width is larger than the phase-matching bandwidth, a separable JSA is
generated. (c) For sGVM (ξ → −1), the group velocity of the pump lies
between the group velocities of signal and idler. This leads to a �45°
phase-matching angle and, given that the pump spectral bandwidth
matches the phase-matching bandwidth, a separable JSA with potentially
indistinguishable signal and idler.
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photon with a classical reference field [37]. Since then, sGVM
sources have been incorporated into dual-pumped Sagnac
schemes to construct degenerate and highly pure photon pair
sources with polarization entanglement [38,39].

C. Problem with Side Lobes

To put these results into context, we next consider the limitations
imposed by the phase-matching function in Eq. (5). In Fig. 4, we
plot the JSAs resulting from this phase-matching function
along with possible broadband spectral filtering. It becomes
immediately obvious that the side lobes of the sinc-shaped
phase-matching function introduce undesired frequency anti-cor-
relations, limiting the maximum purity of heralded photons to
around 86% in the sGVM case. With filters chosen to transmit
the main peak of the JSA but block as many of the correlated side
lobes as possible, it is possible to increase the source performance,
but limitations are still present. In the case of aGVM depicted in
Fig. 4(a), the idler filter can be chosen to be much narrower than
the signal filter. In this example, if the idler is filtered and serves as
a herald, the maximum purity for the heralded signal increases to
97%. In contrast, if the signal is filtered and serves as a herald, the
heralded idler photon has a maximum purity of about 92%. Note
that this value can be increased with a larger pump bandwidth.
In the sGVM example shown in Fig. 4(b), the signal and idler
photons are indistinguishable, and the filtering shown in either
case leaves the other photon with a purity of about 94% when
heralded. We note that these numbers can be further increased
when choosing smaller filter bandwidths at the cost of decreased
heralding rates [40,41].

Luckily, there are elegant methods to shape the phase-
matching function in order to avoid the spectral filtering.
These methods rely on engineering the phase-matching distribu-
tion through modulation of the poling patterns and, in the case of
integrated devices, tailoring the geometry of the waveguided
structures. Since the phase-matching function is the Fourier trans-
form of the quasi-phase-matching (QPM) grating [χ�z� in
Eq. (4)], the nonlinearity profile along the interaction can be
smoothened or apodized to a Gaussian function by modulating
the QPM grating. The first experimental demonstration of
phase-matching apodization was realized by Fejer’s group [42],
where 13 dB suppression of the side lobes is shown. This simple
apodization method reduces the peak efficiency and broadens the
width of the phase-matching function, as expected from the

Fourier analysis. Apart from custom QPM gratings, the authors
also investigate different waveguide geometries effective for elimi-
nating the phase-matching side lobes. Later, many other methods
were proposed and demonstrated to efficiently apodize the phase-
matching function, such as modulation of the poling periodicity
[43], modulating the poling pattern’s duty-cycle [44,45], and
optimizing the orientation of each domain [46–49]. These tech-
niques grant purities in excess of 99% without spectral filtering,
opening new avenues to engineer the TM structure of PDC
states by arbitrary shaping of the phase-matching function.

D. Controlled Generation of Temporal Modes

Finally, we want to highlight two possibilities to accurately control
the generated PDC state beyond separability. For applications
that exploit TMs as the encoding basis, the targeted generation
of states with a user-defined TM structure is highly desirable.
Complementary techniques arise for PDC state engineering
through spectrally shaping the pump pulse in aGVM and
sGVM sources, the former providing pure shaped single photons
while the latter provides flexible sources for high-dimensional
TM entanglement.

In the aGVM case, as seen in Eq. (14), the spectrum of the
idler photon is almost entirely dependent on the phase matching,
while the spectrum of the signal photon is dependent on the shape
of the pump. By manipulating the spectral shape of the pump, the
shape of the signal photon can be programmed on the fly, as seen
in Figs. 5(a)–5(c). So long as the phase matching is narrow relative
to the finest features of the desired spectral shape, the JSA remains
separable. This was recently demonstrated in KTP waveguides
under birefringent phase-matching conditions, providing high-
purity shaped photons at 1411 nm [50].

In contrast, PDC states that comprise a user-defined number
of TMs can be generated in the sGVM configuration. Again, this
is achieved by spectral shaping of the pump pulses. One example
of this is a PDC driven by a pump pulse with a first-order
Hermite–Gaussian spectrum [51], as depicted in Fig. 5(e). In this
case, the generated state is a TM Bell state of the form

jψiBell �
1ffiffiffi
2

p �j0isj1ii � e φj1isj0ii�, (16)

where j0ij (j1ij) labels the j photon occupying a Gaussian (first-
order Hermite–Gaussian) spectrum and j � �s, i�. To add addi-
tional TMs to this state, it is sufficient to increase the order of the
Hermite–Gaussian spectrum of the pump pulse, which is easily
achieved with conventional pulse shaping [52]. Although this
provides a state with finite number of Schmidt modes, the gen-
erated TMs are generally not equally occupied (i.e., they can have
different

ffiffiffiffi
λk

p
) [51], and thus the generated TMs are not max-

imally entangled. Another alternative pump shape to control
the Schmidt modes is a superposition of time bins or, equiva-
lently, cosine functions in the frequency domain, as shown in
Fig. 5(g) [12]. This provides a flexible and versatile source that
generates maximally entangled states with an arbitrary dimension
without the need for changing any hardware.

As the last remark in this section, we want to point out that the
theoretical description of the PDC process presented here, using
the first-order perturbation theory, is only valid when the process
is weakly pumped (also referred to as the low-gain regime)
[53,54]. A full description of such nonlinear optical processes re-
quires the time-ordered treatment of the involved Hamiltonians

(a) (b)

Fig. 4. Joint spectral amplitudes (absolute value) with standard peri-
odic poling and filters on the individual photons. (a) In an aGVM source,
the idler can be filtered to remove the side lobes and herald pure signal
photons. However, filtering on the signal arm cannot be used to remove
the side lobes. (b) In sGVM sources, the JSA is symmetric. Filtering
either signal or idler leaves the other with a purity of about 94%.
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and consideration of the presence of multi-photon components.
In the high-gain regime (with intense pump powers and PDC
mean photon numbers≫1), the time ordering leads to significant
changes of the Schmidt modes and the respective squeezing in
each mode. Despite this, in the high-gain regime it is possible
to generate bright squeezed states that are interesting to study
a range of quantum phenomena at mesoscopic scales [55–57].

To conclude, PDC state engineering is now at a point where
we can exert close-to-arbitrary control over the TM structure of
the generated state. This brings into reach the realization of
TM-based quantum information processing (QIP) applications
and provides us with a very clean laboratory system for the gen-
eration of Hilbert spaces with well-defined dimensions.

4. MANIPULATION AND MEASUREMENT OF
TEMPORAL MODES

With a variety of sources available for both pure and entangled
TM-encoded photons, the next piece of the complete TM-based
QIP toolbox is a quantum device capable of accessing a TM out of
a multimode input. In other words, we require a special quantum-
mechanical beam splitter that operates on a customizable basis
of TMs. A promising tool to build such a device is engineered
frequency conversion (FC).

Frequency conversion has been recognized as means to trans-
late the central frequency of a photonic quantum state while pre-
serving its non-classical signatures. The first proposal in 1990
considered the frequency-translation of squeezed states of light
[58]. Different experiments have since confirmed that FC retains
quadrature squeezing [59–62], quantum coherence and entangle-
ment [63–66], anti-bunching of single photons [67,68], and
non-classical photon correlations [69,70]. Since FC can be highly

efficient [71–73], it provides a useful tool for improved detection
schemes [74–78] and an interface for dissimilar nodes in future
quantum networks [79–89].

However, there is more to frequency conversion. In 2010,
Raymer et al. proposed an interpretation of FC as a two-color
beam splitter [90], enabling for example Hong–Ou–Mandel in-
terference [34] of photons of different color. If the FC is set to
50% efficiency, and if two monochromatic photons that are cen-
tered at the two linked frequencies (red and blue) are sent into the
process, simultaneous sum-frequency generation (SFG) or differ-
ence-frequency generation (DFG) occurs and both photons will
exit the FC either at the blue frequency or the red frequency. The
conversion process links the two frequency bands in a beam split-
ter fashion, as has been demonstrated with single-photon
signals exhibiting Ramsey interference [91] and two-color
Hong–Ou–Mandel interference [92].

The proposal of Ref. [90] also considers the case of spectrally
broadband FC, where a specific input frequency ωin is mapped to
a plethora of output frequencies ωout and vice versa, as deter-
mined by the Heisenberg-picture Bogoliubov transformations,

â†�ωin� ↦
Z

dω 0
inGaa�ωin,ω 0

in�â†�ω 0
in�

�
Z

dω 0
outGac�ωin,ω 0

out�ĉ†�ω 0
out�, (17)

ĉ†�ωout� ↦
Z

dω 0
inGca�ωout,ω 0

in�â†�ω 0
in�

�
Z

dω 0
outGcc�ωin,ω 0

out�ĉ†�ω 0
out�: (18)

Here, â† and ĉ† are creation operators in the input and
frequency-converted output modes, respectively, and the Gij

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Orchestrating Schmidt modes via group-velocity matching and pump pulse shaping. (a)–(c) JSAs for a PDC source with an aGVM setting.
The weights of the first five Schmidt modes λk are shown under each JSA. The state remains single-mode regardless of the pump shape. The only
significant Schmidt modes of signal A0 and idler B0 photons are shown at the bottom, where we plot TM amplitudes versus frequency. The idler
photon shape is invariant to the pump, while the TM of the signal photon reflects the TM of the pump field. (e)–(g) A sGVM PDC can be used
to control the exact number of excited TMs. For example, driving the source with a first-order Hermite–Gaussian pump pulse as in (e) results in exactly
two TMs. This can be extended with higher orders of Hermite–Gaussian pulses as in (f ), but the different Schmidt modes are not occupied with the
same probability. A balanced Schmidt-mode distribution can be achieved when the source is pumped with time-bin superpositions, as in (g).
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are Green’s functions that describe the mapping between the
two. By applying a Schmidt decomposition to the Green’s
functions, an interpretation of broadband FC as a beam splitter
that links sets of input TMs to output TMs becomes apparent
[90]. Similar to PDC, this process will generally be multimode.

Inspired by the previously outlined work in PDC engineering,
the mode structure of FC can be tailored through dispersion
engineering. It turns out that a configuration that is similar to
asymmetric group-velocity matching facilitates single-mode oper-
ation; when the input signal propagates through the nonlinear
medium at the same velocity as the bright pump, but the output
is group-velocity mismatched, one specific TM is selected and
converted to the output frequency, while all other TMs are simply
transmitted [93]. The single-mode FC has been dubbed the
quantum pulse gate (QPG) to reflect that it selects, or gates,
one broadband TM. The reversal of this process, when the output
light shares the group velocity of the pump, has been proposed as
a TM shaper [94].

In the following we briefly outline the QPG formalism. The
interaction Hamiltonian that describes a general FC process is
given by

Ĥ int � θ

Z
dωindωoutF �ωin,ωout�â�ωin�ĉ†�ωout� � h:c:, (19)

where â and ĉ are annihilation operators in the input and upcon-
verted modes, respectively, and θ is a coupling of the process
incorporating the power of the QPG pump and the strength
of the material nonlinearity. The transfer function F �ωin,ωout�
describes the mapping from input to output frequencies, equiv-
alent in the low-efficiency regime to the Green’s function
GRB�ωin,ωout� and analogous to the JSA in PDC processes.
The transfer function, as in the case of PDC, is a product of pump
amplitude and phase matching,

F �ωin,ωout� � α�ωout − ωin�ϕ�ωin,ωout�: (20)

Similar to PDC, we can apply a Schmidt decomposition to
the mapping function and define our operators in the TM basis
[compare Eqs. (3)–(9)], obtaining

Ĥ int � θ
X∞
k�0

ffiffiffiffi
λk

p
ÂkĈ

†
k � h:c:, (21)

with
P

kλk � 1. Despite the similarity to the Schmidt decompo-
sition of the PDC state as formulated in Eq. (9), there is a fun-
damental difference in the meaning of the decomposition and the
Schmidt modes in each case. While the PDC decomposition
expresses the modes of a state, in the case of the FC we have a
SFG operation. The Hamiltonian in Eq. (21) generates operator
transformations

Âk → cos
� ffiffiffiffi

λk
p

θ
�
Âk � sin

� ffiffiffiffi
λk

p
θ
�
Ĉk, (22)

Ĉk → cos
� ffiffiffiffi

λk
p

θ
�
Ĉk − sin

� ffiffiffiffi
λk

p
θ
�
Âk: (23)

These can be interpreted as k independent beam splitters
with reflectivities sin2� ffiffiffiffi

λk
p

θ�, which connect the input Âk to
an output Ĉk.

As previously derived for PDC, the phase-matching function
can be written in terms of the group-velocity mismatch,
Δk�ωin,ωout�. Assuming that the nonlinear medium is periodically
poled to ensure phase matching at the center frequencies, this phase
mismatch can be written to the first order in analogy to Eq. (12) as

Δk�ωin,ωout� ≈ �u−1in − u−1p �ωin − �u−1out − u−1p �ωout: (24)

For the case of aGVM where the input signal propagates at the
same velocity as the pump (uin � up), the first-order phase-
matching function is only dependent on the upconverted fre-
quency ϕ�ωin,ωout� ≈ ϕ̃�ωout�. If the phase matching is spectrally
narrow enough that the output frequency spread is negligible
compared to the input, the contribution of the pump field is ap-
proximately dependent on only the frequency of the input field,
α�ωout − ωin� ≈ α̃�ωin�. If these approximations hold, the transfer
function can be rewritten simply as

F�ωin,ωout� ≈ α̃�ωin�ϕ̃�ωout�: (25)

As the phase-matching function tightens, the transfer func-
tion becomes more and more separable, as illustrated in
Figs. 6(c) and 6(d).

For a separable transfer function, the Schmidt decomposition
yields only one single non-zero Schmidt coefficient, and the in-
teraction Hamiltonian reduces to the desired QPG Hamiltonian,

ĤQPG � θÂ0Ĉ
†
0 � h:c:, (26)

and we obtain the following operator transformations:

Â0 → cos�θ�Â0 � sin�θ�Ĉ0, (27)

Ĉ0 → cos�θ�Ĉ0 − sin�θ�Â0, (28)

Âk → Âk for k ≠ 0, (29)

Ĉk → Ĉk for k ≠ 0: (30)

(a)

(b)

(c)

(d)

Fig. 6. Frequency conversion process and its transfer function.
(a) Outline of a general frequency conversion process with pump, input
and output fields. (b)–(d) Sum-frequency conversion transfer functions
F �ωin,ωout� with its marginal distributions (left) and its first few Schmidt
coefficients

ffiffiffiffiffi
λk

p
. (b) A non-engineered SFG with significant frequency

correlations and a K ≈ 3.7. (c) and (d) present a tailored SFG process
with aGVM condition with pump functions α�ωout − ωin� of
Gaussian and first-order Hermite–Gauss, respectively, and a K ≈ 1.01.
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Hence, the ideal QPG selects one single input TM and con-
verts it to an output TM with an efficiency of sin2�θ�, while all
orthogonal TMs pass through the QPG unconverted and undis-
turbed. The selected input TM Â0 is defined by the shape of the
bright pump pulse that drives the conversion (α̃�ωin�), whereas
the shape of the output TM Ĉ0 is given by the envelope
of the phase-matching function (ϕ̃�ωout�) [93,94]. By shaping
the spectral amplitude and phase of the QPG pump pulse, the
mode selected by the QPG can be adapted on the fly. While most
works have motivated the QPG towards Hermite–Gauss TMs, it
can also be set to select arbitrary superpositions as well as entirely
different mode bases (e.g., time or frequency bins) by reshaping
the pump pulse. While other group-velocity conditions exist that
enable nearly single-mode sum-frequency generation, the aGVM
case outlined here has been shown to be optimal [95].

Although ideal QPG operation as described in Eq. (26) re-
quires perfect GVM between the pump and input, one can still
realize a nearly single-mode QPG if the group-velocity mismatch
is small with respect to the temporal width of each field. To com-
pare different scenarios, we redefine the group-velocity mismatch
contrast, which was introduced in Eq. (13) as

ξ � u−1in − u−1p
u−1out − u−1p

: (31)

An aGVM condition between the pump and input fields
means ξ → 0. This definition can help us to study the feasibility
of building a QPG in different nonlinear materials with different
dispersion properties, which will be discussed in the next section.

More detailed studies followed this first proposal for a QPG,
which focused in particular on the behavior of a QPG as a func-
tion of conversion efficiency. In this context, implementations
based on both four-wave mixing and SFG were investigated
[95]. The figure of merit that was defined is the so-called selectivity
S of the QPG, which is defined as

S � η0 ·
η0P∞
k�0 ηk

≤ 1, (32)

where ηk � sin2� ffiffiffiffi
λk

p
θ� is the conversion efficiency for the kth

TM. The selectivity measures both the single-modedness of
the QPG and the conversion efficiency for this mode.

An ideal QPG operates on only one TM and converts this
mode with unit efficiency (S � 1). In a more realistic scenario,
the QPG becomes multimode when approaching high conversion
efficiencies, owing to non-perturbative interaction dynamics often
referred to as time-ordering effects in the quantum context
[53,95,96]. For a single QPG, a maximum selectivity of S ≈
83% has been determined [95]. Figure 7 shows the change in
the transfer functions for increasing pump powers [95].

In Ref. [97], Reddy et al. proposed a scheme to overcome this
limitation, dubbed temporal-mode interferometry. Using two
QPGs in a Mach–Zehnder-like configuration, they show it is pos-
sible to achieve selectivities approaching unity. In this scheme,
two QPGs are operated at 50% conversion efficiency—similar
to two balanced beam splitters—and the phases between the
two QPGs are adjusted such that interference leads to complete
conversion of the targeted input TM. Since each QPG operates at
a moderate conversion efficiency, the individual processes are still
close to single-mode, and an overall selectivity of more than 98%
can be achieved.

Despite this advance, simultaneously achieving high efficiency
and isolating orthogonal modes is a significant experimental chal-
lenge. In scenarios where the QPG is used for temporal-mode

Fig. 7. Absolute value of the temporal (left) and spectral (right) transfer
functions for broadband frequency conversion. The left column shows
the mapping from input times t in to output times tout for increasing
pump powers (top to bottom), corresponding to increasing conversion
efficiencies. The relative pump energy P, selectivity S, and separability σ0
are printed on top-right corner of each row. This leads to simultaneous
forward and backward conversion, which is reflected by the oscillations in
the mapping function. The functions were calculated by numerically
solving the Heisenberg equations for the input and output field opera-
tors. The right column shows the respective spectral mapping functions.
It can be seen that the general shape of the function broadens and that
additional correlations are introduced for stronger pump powers. These
correlations do not show up in a perturbative approach.
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reconstruction and measurement, efficiency may not be the dom-
inant concern. Instead, one might simply need to know how well
the upconverted signal identifies the presence of the target TM.
To isolate this criterion, often the separability σj for a given mode j
among a d -dimensional basis is quantified, defined as [98]

σj �
ηjPd
k�0 ηk

≤ 1: (33)

This quantifies how well the QPG isolates a single mode from
a mixture irrespective of incomplete conversion. Additionally,
oftentimes the suppression or extinction ratio for mode j is
reported [99,100],

E:R:j�dB� � 10 log10
ηj

maxk≠jηk
, (34)

which defines to what extent the QPG suppresses signals from
modes orthogonal to the target mode.

5. EXPERIMENTAL PROGRESS ON TM
SELECTION

In this section, we provide an overview of experimental work on
temporal-mode-selective devices built with pulse shaping and
dispersion engineering. To start, it is imperative to find nonlinear
materials and interactions that satisfy the aGVM conditions, i.e.,
minimize jξj in Eq. (31). This condition can be met for SFG
processes in multiple materials, as mapped out in Fig. 8. In par-
ticular, it naturally occurs near degeneracy in materials with
type-0 or type-I phase-matching conditions (i.e., where the
QPG pump and input have the same polarization and approxi-
mately the same frequency). However, in these near-degenerate
configurations, the second harmonic of the QPG pump adds a
strong source of phase-matched background noise for single-
photon operation, and suppressing it by detuning the signal from
degeneracy quickly degrades the mode selectivity of the device, as

seen in the rising ξ values in Fig. 8. To operate with “perfect”
group-velocity matching, specific conditions can be found in
type-II or frequency-nondegenerate configurations. For example,
in z-cut lithium niobate, a 1550 nm ordinarily polarized input
signal may interact with a 875 nm extraordinarily polarized
QPG pump to produce an ordinarily polarized upconverted signal
in the green range of the visible spectrum [93,99]. Since the SHG
process for the QPG pump is both phase mismatched and in the
blue range, the upconverted signal can be effectively isolated at
the optimal GVM wavelength. However, the type-II nonlinear
strength is considerably weaker than the type-0, necessitating
stronger pump fields.

While broadband temporal modes find a natural use in quan-
tum applications, similar concepts have been proposed and ex-
plored for classical communications. By taking a broad flat-top
optical pulse and manipulating its spectral phase with a pulse
shaper, one can generate sets of orthogonal pulses based on,
for example, Hadamard codes. If a decoder applies the correct
decoding phase sequence, the ultrashort pulse becomes Fourier
limited once more, with a commensurate increase in peak power
[101]. This concept can be merged with dispersion-engineered
sum-frequency generation to enable ultrashort-pulse code-
division multiple access. If a broadband pulse is sent through a
long nonlinear crystal for second-harmonic generation (SHG),
and the crystal is group-velocity mismatched such that the
SHG light walks off from the input light, and the second
harmonic will be temporally lengthened and spectrally narrowed.
If a frequency-dependent phase is applied to the pulse, it will only
be efficiently frequency doubled if the phase is symmetric. If two
users each have access to half of the spectral bandwidth of an ul-
trashort pulse, the pulse will cease to upconvert in this medium if
they apply orthogonal phase codes [102,103]. This effect is due to
interference within the broadband pulse structure and enabled by
the group-velocity walkoff in the nonlinear medium. This scheme
was demonstrated by Weiner’s group using a 20-mm-long bulk
PPLN sample with a broad input pulse at telecommunications
wavelength split into 16 channels. The SHG from mismatched
codes exhibited an extinction ratio of over 27 dB when filtering
the central frequency component [102]. Using entangled photon
pairs to supply the same effective spectral narrowing as the group-
velocity mismatched SHG, analogous encoding schemes have
been demonstrated with biphoton upconversion [104].

Recent realizations of the QPG allow for the analysis and
reconstruction of the temporal modes of distant single-photon
level pulses. These experiments can generally be described by
the apparatus of Fig. 9. In Silberhorn’s group, a quantum pulse
gate was constructed using a type-II interaction in titanium-
indiffused PPLN waveguides with short poling periods (4.4 μm)
[99], where an orthogonally polarized and group-velocity
matched telecom (1535 nm) input signal and a Ti:sapphire
(875 nm) QPG pump mix to produce a signal in a green
(550 nm) upconverted beam. The broad GVM of this process
allows it to be used for sub-picosecond pulses (approximately
300 fs FWHM), with the selected mode exactly matching the
spectral profile of the QPG pump in the low-efficiency regime,
as seen in Fig. 10. In Ref. [99], an efficiency of nearly 88% was
observed for the primary Gaussian mode with a single-photon-
level coherent state input, with a demonstrated extinction ratio of
approximately 7 dB, limited by the resolution of the pulse shaper.
With improved QPG pump pulse shaping, this experiment was

Fig. 8. Group-velocity mismatch contrast ξ (such that 0 is perfectly
matched) for processes in lithium niobate (LN) waveguides, potassium
titanyl phosphate (KTP) waveguides, and bulk bismuth borate (BiBO),
as the input signal is detuned from the optimal group-velocity matching.
The grey dashed line corresponds to the type-II process in LN, where
GVM is found for a 1550 nm signal, 875 nm pump, and 560 nm up-
converted [99]. All other processes have degenerate signal and QPG
pump for group-velocity matching, and IR (NIR) corresponds to
1550 nm (800 nm) signal and QPG pump. Signal detuning or noncol-
linear geometry is necessary in all cases except for type-II LN to overcome
the second harmonic of the QPG pump.
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extended to measure PDC photons from a spectrally pure source
with an extinction ratio of 12.8 dB and shaped coherent laser
light with an extinction ratio of over 20 dB, although with a
greatly reduced conversion efficiency (approximately 20%) [105].
Experimental SFG transfer functions using this system can be
seen in Fig. 10.

An approximate approach to mode-selective measurement
without strict group-velocity matching was later put forth by
Huang and Kumar [106]. Although the optimal mode-selective

frequency conversion configuration has been shown to be group-
velocity matched [93,95], they found that reasonably single-mode
frequency conversion could be realized through numerically opti-
mized pump shaping so long as the bandwidth of the phase
matching function is significantly narrower than the bandwidth
of the pump. By generating a 20 GHz pulse train through electro-
optically modulating a strong CW laser, Kowligy et al. produced a
17-element frequency comb for both the input signal and QPG
pump, with each tooth individually addressable in phase and
amplitude. With this scheme, they were able to experimentally
demonstrate efficiencies near 80% and 8 dB extinction ratios us-
ing a 6 cm type-II PPKTP waveguide [100]. In follow-up work,
they reverted to a nearly group-velocity matched configuration
using a near-degenerate type-0 SFG in a 52 mm PPLN waveguide
with input signals around 1550 nm. Applying their waveform
generation and numerical optimization to this situation, they
were able to demonstrate efficiencies above 75% for a four-
dimensional Hermite–Gaussian alphabet with separabilities above
65% and as high as 87% for picosecond-scale Gaussian pulses
[98]. These results have been extended to novel mode-selective
pulse-shaping schemes based on overconversion in SFG [107]
and demonstrations of mode-selective upconversion with efficien-
cies and selectivities high enough to outperform time-frequency
filtering for signal isolation [108].

In the low-efficiency regime, the spectral shape prepared for
the pump pulse corresponds exactly to the temporal mode se-
lected by the QPG. In the high-efficiency regime, this first-order
treatment breaks down due to the time-ordering effects outlined
in the previous section and Fig. 7 [53,96,97]. Reddy and Raymer
have investigated this regime with a QPG based on a 5-mm
PPLN waveguide phase matched for a type-0 interaction between
an 812-nm input signal, an 821-nm QPG pump, and a 408-nm
register (output) mode [109,110]. By operating with nearly de-
generate pump and signal, the group-velocity mismatch between
the two red modes is negligible compared to the violet upcon-
verted mode, and the type-0 PPLN interaction provides an
extremely high nonlinearity. This allowed them to saturate the
QPG efficiency at reasonable QPG pump powers (85% with
3.5 mW at 76 MHz with 500-fs pulses) [109]. They also con-
firmed numeric predictions that, in the high-efficiency regime,
greater conversion efficiencies and mode selectivities can be
reached with QPG pump shapes that differ from their analytically
calculated low-efficiency regime counterparts.

With 50% conversion efficiency, enhanced mode selectivity is
possible through temporal mode interferometry (TMI), where
phase reshaping between two 50% efficient QPGs suppresses
higher-order corrective terms [97,111,112]. By passing through
the same waveguide twice (necessary to ensure identical phase-
matching conditions), Reddy and Raymer were able to show
mode-selective Ramsey interference with enhanced efficiency
and mode selectivity relative to numerically calculated single-stage
expectations [110]. This enhancement was present using the ana-
lytic low-efficiency-regime QPG pump mode shapes, removing
the need for efficiency-dependent numerical optimization.

A. Mode Selection in Quantum Memories

A further possibility to manipulate TMs is by tailored light–
matter interactions in single-mode quantum memories, in par-
ticular Raman ensemble memories. Here, the optical light field
interacts with an ensemble of atoms with a Λ energy level

Fig. 9. Generic experimental situation for a quantum pulse gate. A
TM-encoded single photon or weak coherent state is prepared through
PDC or through shaping a spectrally broad input pulse and attenuating
with a neutral density (ND) filter. A strong QPG pump is prepared using
similar pulse shaping methods, or through electro-optic modulation
(EOM) of a strong cw laser to produce a frequency comb, which is modu-
lated in a tooth-by-tooth fashion by a pulse shaper [100]. The two are
mixed in a group-velocity-matched χ�2� waveguide, and the upconverted
signal in the register mode is measured. For temporal-mode interferom-
etry (TMI) [97], the QPG is split into two 50% efficient steps with phase
shifts in between.
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Fig. 10. Experimental spectral-intensity transfer functions for the first
four Hermite–Gaussian temporal modes (top–bottom), as measured in
the experimental apparatus of Ref. [165]. The QPG in question was
built from a 17-mm-long PPLN waveguide phasematched for a type-
II interaction (875 nm + 1540 nm to 555.7 nm), with the group-velocity
matching necessary to produce highly separable SFG transfer functions.
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configuration. A strong control pulse drives a two-photon Raman
transition, which maps the addressed input TM onto a so-called
spinwave, which can be transferred back into an optical field by
applying another strong control pulse. Similar to a QPG, the
underlying equations describing this interaction can be cast into
the form of a broadband beam splitter, where the shape of the
strong control pulse determines the TMs that are stored and
retrieved [113]. In contrast to QPGs, quantum memories give
access to a wide range of accessible spectral bandwidths ranging
from a few megahertz (MHz) up to terahertz (THz), depending
on the physical system used to realize the memory. Recent results
have shown the potential usefulness of these types of memories for
the storage and manipulation of multimode quantum frequency
combs [114] and the frequency and bandwidth conversion
of photons [115,116]. By performing a process tomography,
Walmsley’s group has demonstrated the single-TM operation
of a Raman memory [117]. Similar to the single-stage QPG,
the Raman memory shows a degrading single-modedness with
increasing efficiency. One way around this problem is to place
the memory inside a cavity, which enables both high efficiency
and mode selectivity simultaneously [118].

B. Multimode Manipulations with Sum-Frequency
Generation

While group-velocity engineered waveguides and mode-selective
interfaces are powerful tools, by definition they are unable to
reshape the structure of multimode fields except as resource-
intensive add/drop devices [51]. Applied temporal mode encod-
ings may need multimode reshaping, for example, to match the
central frequencies and bandwidths of PDC photons to the accep-
tance range of a solid-state memory interface [119], or to develop
resource-efficient rotations and manipulations in the temporal
mode basis. Initially, single-photon SFG was explored in the
context of upconversion detectors, which efficiently shifts the
frequency of photons from the telecom regime to the visible,
where more efficient avalanche photodiodes exist [71,77].
While advances in superconducting nanowire detectors have
eased telecom detection requirements, such processes have
continued to find quantum applications, including frequency
conversion for connecting quantum network nodes [119–121]
and ultrafast signal gating [35,122,123]. Multimode SFG proc-
esses have been shown to add little noise, evidenced through ex-
periments that have confirmed entanglement preservation in time
bin [63] and polarization [66,124] degrees of freedom after
frequency conversion and bandwidth manipulation.

For more general transformations, we can look to concepts
from temporal imaging [125,126], which describes manipulations
to the temporal structure of light in much the same way that
spatial imaging describes the actions of lenses and diffractive
propagation. Temporal imaging systems require the ability to
implement phase shaping in both the spectral and temporal
domains. Spectral domain manipulations can be accomplished
simply with phase-only pulse shaping or standard dispersion-
compensation techniques [52], but temporal phase manipulation
(often called “time lensing”) is more difficult for sub-picosecond
pulses, especially at the quantum level. Recently, groups have
shown that dispersion and sum-frequency generation provides
an effective toolbox for manipulating the bandwidth and time
scale of PDC photons [127] as well as reshaping the time-
frequency structure of entangled photon pairs [128]. These

techniques work in the exact opposite regime as the QPG, in that
broad, non-restrictive phase matching is desired, i.e., all three
fields must stay approximately group-velocity matched through
the interaction. This often limits SFG-based time lenses to short
nonlinear crystals, but the process can in principle reach high
efficiency without the same time-ordering roadblocks as mode-
selective measurement [95,129,130]. Note that temporal imaging
can be accomplished in analogous ways through four-wave mixing
[131,132]. Alternatively, other groups have shown deterministic
time lensing using electro-optic modulation [133–135] and cross-
phase modulation [136]. Taking concepts from the work done
on quantum temporal imaging and applying them to tempo-
ral-mode manipulation is an exciting direction for future research.

6. TOWARDS APPLICATIONS OF TEMPORAL
MODES IN QUANTUM INFORMATION SCIENCE

Finally, in this section, we outline experimental progress towards
harnessing mode-selective upconversion for quantum technolo-
gies. The experiments referenced above have shown that quantum
pulse gates can be realized with high efficiencies and high selec-
tivities. In order to apply them for quantum signal processing,
high signal-to-noise ratios are absolutely essential to separate
quantum from classical signals and to protect resources such as
entanglement and squeezing.

To exploit temporal modes as a high-dimensional coherent
quantum resource, the selectivity must be maintained for a
high-order alphabet as well as over the complete set of possible
superposition states, as illustrated in Fig. 11. The security of
quantum key distribution, for instance, relies entirely on the
ability to measure complementary observables. For tomographic
reconstruction of d -dimensional quantum states, projective mea-
surements onto at least d 2 states spanning the total Hilbert space
are required. A complete set of d � 1 mutually unbiased bases
[137,138] provides a sufficient set of projections, examples of

Fig. 11. Spectral field amplitudes spanning a complete set of mutu-
ally-unbiased bases for Hermite-Gauss modes in two (top) and five (bot-
tom) dimensions [165,137]. In order to completely access the Hilbert
space, effective projections on all of these states must be realizable.
The normalised spectral intensity is shown in grey and the red line
corresponds to the spectral phase (on the interval 0–2π).
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which in the Hermite–Gauss basis are shown in Fig. 11. High-
dimensional two-qudit state tomography of entangled photons
has been demonstrated with encodings in time-binned modes
[84,139], spectral-binned modes [140,141], and orbital angular
momentum spatial modes [142]. To avoid the intense resource
devotion needed for full tomographic reconstruction, properties
such as entanglement can be verified with witnesses instead
[143–146]. However, these techniques still require the ability
to project in complementary bases.

Utilizing the time-frequency degree of freedom for high-
dimensional quantum information protocols has generally been
confined to the context of time- or frequency-bin temporal
modes, where the computational-basis modes are directly distin-
guishable in intensity. In particular, time bins have become the
temporal-mode basis of choice behind the longest-distance Bell
inequality violations over fiber networks [147–149], many com-
mercial QKD systems [150], and high-dimensional entanglement-
enabled quantum communication schemes [151–153]. By
passing a photonic signal through an unbalanced Mach–
Zehnder interferometer, such that the reflected arm acquires
an overall delay and adjustable phase relative to the transmitted
signal, a superposition of arrival times can be prepared or mea-
sured [154]. Extensions to higher dimensions have been realized
with multi-path interferometers [155], cascaded Mach–Zehnder
interferometers with different delays [84,153], and time-to-
polarization conversion enabled by cross-phase modulation [139].
However, the interferometers in the first two techniques require
detectors with time resolution fine enough to separate non-
interfering events, and the latter technique is limited in which
superpositions can be directly measured. By using SFG with
chirped inputs as a time-to-frequency converter, it has been dem-
onstrated that projective measurements can be made on superpo-
sitions of time-bin photonic states on time scales well below
detector resolution [156]. While this technique was effective
enough to convincingly violate a Bell inequality and reconstruct
time-bin qubit density matrices, it is limited to a maximum
efficiency of 1∕d for a given projection.

SFG has also been key to frequency-bin encoded schemes, par-
ticularly those involving the recombination of a PDC photon pair
in a second nonlinear crystal [157,158]. By creating spectrally en-
tangled photons and slicing their spectra into bins, researchers
have used this method to demonstrate novel high-dimensional
encoding schemes [104] and violate high-dimensional Bell in-
equalities [140]. However, since these experiments rely on recom-
bination of the two photons, they are difficult to extend to
quantum network applications. Recent work using low-noise
electro-optic modulators to create sidebands from a frequency
comb source has enabled projective measurements on frequency-
bin entangled photons from frequency comb sources without
needing the two photons to recombine [141,159,160]. These
tools have been demonstrated to enable deterministic frequency-
bin rotations [161,162] and fast feed-forward frequency shifting
for spectrally multiplexed photon sources [163].

The dispersion-engineered techniques outlined in Section 4
have the key advantage that so long as the transfer function of
Eq. (20) remains separable, they are capable of projecting onto
temporal modes in arbitrary bases, including both the binned
modes and field-overlapping pulse modes. To be effective for
high-dimensional quantum protocols, dispersion-engineered
mode-selective SFG must be both low-noise and coherent, in

the sense that it remains effective for not only the basis modes
but also general superpositions. Progress has been made towards
applying the quantum pulse gate to photonic state characteriza-
tion and manipulation, but it remains an active field of research.

Using the configuration of Ref. [99] with input from a spec-
trally pure PDC source, it was confirmed that the QPG output
maintains nonclassical photon number correlations (i.e., the her-
alded g�2� of both the input and register modes was measured to
be 0.32� 0.01 < 1) [164]. By shaping the QPG pump over a
tomographically complete set of TMs, this setup has been used
to reconstruct the one-qudit TM density matrix of PDC photons
varied from single- to multimode configurations, with both inten-
sity- and phase-correlated multimode structure [105]. However,
worse performance was noted for higher-dimensional reconstruc-
tions. The device’s performance was fully characterized through
temporal-mode detector tomography [165], which showed that
a system based on a 17-mm PPLN waveguide could reconstruct
the TM density matrix in seven dimensions with a fidelity higher
than 80%. By calibrating the QPG with this detector tomogra-
phy, the reconstruction algorithm could be altered to reconstruct
randomly generated seven-dimensional coherent superpositions
of temporal modes with a fidelity of �98.8� 0.4�%. These
experiments are, to date, the only dispersion-engineered TM
measurements performed with a quantum light source rather than
attenuated coherent light.

In a continuous-variable context, where quantum information
is encoded in field quadratures rather than superpositions of
discrete qudit states, temporal modes still serve an important
purpose in SPOPOs. However, for these to work, continuous-
variable operations must operate in a mode-selective fashion.
Treps’s group showed that QPG techniques can work as a
mode-selective photon subtractor, a key non-Gaussian compo-
nent of the continuous-variable toolkit [166–168]. Since the
SPOPO emits squeezed light over many temporal modes, a
mode-selective beam splitter is necessary to ensure that the her-
alded photon subtraction is matched to the desired temporal
mode. Using a noncollinear frequency-degenerate phase matching
in bulk bismuth borate (BiBO) supplemented with spectral filter-
ing and shaped weak coherent states (n̄ < 1), Ra et al. were able to
reconstruct the temporal-mode subtraction matrix in both the
spectral bin and Hermite–Gauss basis [168], which characterizes
the modal purity of the subtraction process. For a seven-
dimensional HG superposition, the subtraction matrix was found
to have a purity of 96% regardless of whether the signal was bright
or on the single-photon level. Since the photon-subtraction
method requires weak coupling in order to minimally disturb
the quantum state, a QPG with a low efficiency (0.1%) was used,
equivalent to a low-reflectivity beam splitter [166].

7. OUTLOOK AND CHALLENGES

We have shown that dispersion-engineered waveguides provide a
capable toolbox for generating and measuring photon temporal
modes. By constructing photon-pair sources simultaneously pure
in both spatial and temporal degrees of freedom as shown in
Section 3, it is possible to efficiently create pure heralded single
photons, capable of providing the high-visibility quantum inter-
ference necessary for multiphoton quantum logic. By exploiting
the group-velocity matching of these systems, it was also shown
that the temporal shape and entangled structure of the temporal
modes can be customized, providing a versatile resource for
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quantum state engineering. In Section 4, it was shown that these
same engineered techniques can be applied to sum-frequency gen-
eration, providing the necessary tools to manipulate and measure
this structure. In Sections 5 and 6, we outlined the considerable
experimental progress that has been made towards realizing this
toolbox.

Many challenges remain to push toward practical application.
Temporal-mode-selective devices have been demonstrated in the
sub-picosecond or few-picosecond regime, where commercially
available pulse shapers exist. Such time scales are natural
for PDC processes, but come with difficult synchronization
challenges for long-distance quantum communication or entan-
glement distribution. Moving to longer, less jitter-sensitive
regimes through memory-based interfaces or resonant cavities
[169] relaxes this concern, but increases the burden of pulse shap-
ing. Four-wave mixing techniques have more complicated noise
landscapes for quantum tasks, but offer considerably longer inter-
action lengths and are currently understudied for temporal-mode
management. In all cases, for high-dimensional tasks, devices that
isolate a single temporal mode are difficult to scale, requiring
multiple shaped pulses and physical media to construct a
multi-output measure. Techniques that demultiplex a set of
pulsed temporal modes into spatial or spectral bins, equivalent
to the orbital angular momentum mode sorter in space [170], are
essential to scale these techniques to high-dimensional networks.
A promising avenue for these temporal-mode demultiplexers is
through multi-peak phase-matching structures [171,172].

By accessing the temporal mode structure of quantum light,
we can open a new frontier in photonic quantum information
science. By tailoring PDC sources to directly generate pure pho-
ton pairs, an important step towards scalable quantum networks
has been taken. With measurements sensitive to the time-
frequency structure in arbitrary phase-dependent bases, quantum
pulse gates may open the door to novel ultrafast measurement
schemes. We have outlined some of the significant advances that
have been made in the past 10 years from numerous researchers
across the globe. With an active and engaged community, we
eagerly anticipate the next 10 years.
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