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The representation of quantum states via phase-space functions constitutes an intuitive technique to charac-
terize light. However, the reconstruction of such distributions is challenging as it demands specific types of
detectors and detailed models thereof to account for their particular properties and imperfections. To overcome
these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space
distributions whose functionality does not depend on the knowledge of the detectors, thus defining the notion
of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space
quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using
transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the
characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality
with high statistical significance.

I. INTRODUCTION

The characterization of quantum light is a main chal-
lenge one encounters when implementing classically infeasi-
ble tasks, such as quantum communication protocols [1–3].
On a more fundamental level, studying the peculiarities of
quantized radiation fields leads to a profound understanding
of the role of quantum physics in nature in general, and how
it is distinct from classical wave theories in particular. As in
classical systems, quantum-optical phase-space distributions
offer a versatile instrument to directly visualize unique fea-
tures of nonclassical light, such as demonstrated for squeezing
[4–6]. Moreover, negativities in certain phase-space functions
directly point at quantum properties of light; see, e.g., Refs.
[7–12]. For the above reasons, the representation of quan-
tum light in phase space is one of the most frequently applied
methods to characterize nonclassical light.

However, the estimation of phase-space distributions from
experimental data is a cumbersome task. Consequently, this
reconstruction problem inspired a wide range of research [13–
15], leading to sophisticated analytical tools, such as solv-
ing inversion problems [16, 17], employing diverging pattern
functions [18, 19], performing maximum-likelihood estima-
tions [20, 21], and using data pattern recognition [22, 23]. In
addition, each family of detection devices has to be equipped
with its own precise model to reliably extract information
about phase-space functions [13–15]. This treatment com-
prises a comprehensive analysis that assesses (i) how a de-
tector responds to incident light [24, 25], including, e.g., non-
linear detection responses [26, 27], and (ii) how the light ab-
sorption is influenced by a number of possible imperfections,
e.g., efficiencies [28, 29]. Moreover, applying these methods
can also require universally applicable, yet rather demanding
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theoretical and experimental techniques in practice, such as
performing detector tomography and calibration [30–38].

Despite these challenges, phase-space distributions con-
stitute a highly successful approach to revealing nonclassi-
cal properties of light [7–12]. For example, s-parametrized
quasiprobabilities [39, 40], as well as their non-Gaussian gen-
eralizations [41, 42], can exhibit negativities which are incom-
patible with classical light. Even if a phase-space function
does not exhibit negativities, observable patterns render it pos-
sible to identify quantum features, for instance, via the non-
negative Husimi function [43–45] or through marginal distri-
butions [46, 47]. Because of its success, the concept of phase-
space functions has been further extended to other physical
scenarios; see Ref. [48] for a thorough list. To name a few,
atomic ensembles [49–52] and entanglement [53–55] have
been successfully characterized using quasiprobability distri-
butions. Nevertheless, there remains a dependency on well-
defined detection schemes and reconstruction algorithms.

In this contribution, we circumvent the reconstruction
problem by devising a measurement protocol that results in
detector-agnostic phase-space (DAPS) distributions, which
can be directly estimated and encompass known quasiprob-
abilities. We demonstrate our scheme with transition-edge
sensors (TESs), which have sophisticated physics underlying
their operation, and we analyze our data without relying on
any specific detector models. Our DAPS functions reveal non-
classical features expected from our generated heralded multi-
photon states with high statistical significance. Moreover, the
measurement of vacuum alone enables us to predict the unique
structures of DAPS distributions as demonstrated for our ex-
perimentally generated states.

II. THEORY FRAMEWORK

Our measurement scheme is a combination of unbalanced
homodyning [56] and a multiplexed detection layout [57]; see
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FIG. 1. Protocol overview. A signal state ρ̂ is mixed on a |t|2 : |r|2 beam splitter with a LO |β 〉 in an unbalanced homodyning configuration.
The resulting state ρ̂(β ) is fed into a multiplexing scheme (shown for S = 2 steps). Each output beam is measured with a detector that can
produce some outcomes (here, K = {0, . . . ,K = 3}). The resulting statistics cN0,...,NK (β ) is obtained, where Nk counts the number of outcomes
k and N0 + · · ·+NK = N. From the measured data, we directly estimate our generalized phase-space distributions, cf. the first line in Eq. (2).

Fig. 1. A signal light field, ρ̂ , is mixed with a local oscillator
(LO), |β 〉, on a beam splitter. One of the output states, rep-
resented through ρ̂(β ), is injected into a multiplexing scheme
which consists of S steps. In each step, light is split into output
fields with the same intensity, which then can be split again.
The finally obtained N = 2S output beams are individually
measured with unknown detectors, which are not specified
but assumed to operate in the same manner. Each detector re-
turns one of the possible outcomes K = {0, . . . ,K}. In Refs.
[58, 59], we have shown for the multiplexing part that inde-
pendently of the detector response, the probability to simul-
taneously measure Nk times the outcome k (∀k ∈K ) follows
a quantum version of multinomial distribution; its generaliza-
tion to ρ̂(β ) reads

cN0,...,NK (β ) =

〈
:

N!
N0! · · ·NK!

π̂
N0
0 · · · π̂

NK
K :
〉

ρ̂(β )

, (1)

where : · · · : denotes the normal ordering and {π̂}k∈K is the
unknown positive operator-valued measure of the detectors.

The only assumptions made are a balanced splitting in the
multiplexing and identical response functions for the N detec-
tors, including all imperfections. We can account for devia-
tions from both assumptions by including a systematic error,
directly estimated from asymmetries in the measured data; see
the Supplemental Material (SM) for details [60].

A probability distribution is entirely characterized through
its generation function, which can be expressed as

gz0,...,zK (β ) = ∑
N0,...,NK

zN0
0 · · ·z

NK
K cN0,...,NK (β )

=
〈

:(z0π̂0 + · · ·+ zK π̂K)
N :
〉

ρ̂(β )
,

(2)

for z0, . . . ,zK ∈ R. The second line is a result of the multi-
nomial form of the statistics in Eq. (1). One salient fea-
ture is that classical light fields have a nonnegative gener-
ation function gz0,...,zK . To see this, first recall that a clas-
sical light field is described through a nonnegative Glauber-

Sudarshan distribution [61, 62], which is not affected by dis-
placements and describes a state as a statistical mixture of co-
herent states. Furthermore, for all even N, we can define the
operator f̂ = f̂ † = (z0π̂0 + · · ·+ zK π̂K)

N/2. As for any non-
negative Glauber-Sudarshan function 〈: f̂ † f̂ :〉 ≥ 0 holds true
[63–66], we conclude

gz0,...,zK (β )
cl.
≥ 0. (3)

A violation of this inequality certifies the nonclassicality of
the signal light, ρ̂ . We can also define a special case of this
generating function,

Gz(β ) =g1,z,z2,...,zK (β ). (4)

Similarly to the expression in Eq. (2), Gz is straightforwardly
estimated from the measured detector outcomes cN0,...,NK (β )

by setting zk = zk, and Gz is nonnegative for classical light.
As an example, we may consider photocounting [24]. Al-

though this model is not required for our approach and does
not apply to our experiment (TESs have a finite photon-
number resolution, a non-unit detection efficiency, and a non-
linear response function [59]), it demonstrates how Gz gen-
eralizes the concept of well-known phase-space distributions.
For photocounting, we find [60, 67]

Gz(β ) =〈:e−[1−z]η n̂:〉ρ̂(β ) =
π(1− s)

2
P
( r

t
β ;s
)
, (5)

with η and n̂ being the efficiency and the photon-number op-
erator, respectively, and s = 1− 2/[η |t|2(1− z)] [68]. Thus,
Gz(β ) resembles the s-parametrized distributions P(rβ/t;s)
[39, 40]. Beyond photoelectric detectors, we refer to gz0,...,zK
and Gz as DAPS distributions as Eqs. (2) and (4) apply with-
out any knowledge of the measurement operators {π̂k}k∈K .
In this context, it is worth emphasizing that the first line in Eq.
(2) enables the estimation of our DAPS distributions as a re-
sult of the measured coincidence statistics cN0,...,NK (β ) alone.
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III. IMPLEMENTATION

By implementing a single multiplexing step, N = 2, we
demonstrate how to apply our theoretical framework of DAPS
distributions. To realize our protocol in Fig. 1, we pro-
duce heralded photon states ρ̂ and different LO amplitudes
β . The detectors used for the measurement and the heralding
are TESs, which count photons up to a maximal number K. In
the following, we briefly describe the experimental setup; see
the SM [60] for more details.

Femtosecond pulses from a titanium sapphire laser are
coupled into two separate, periodically poled potassium ti-
tanyl phosphate (ppKTP) waveguides. With the first ppKTP
waveguide, we prepare the signal ρ̂ . Pumping the waveguide
produces two-mode squeezed vacuum via type-II parametric
down conversion (PDC) [69]. One mode is sent to a TES de-
tector to herald photon states in the other mode. With the
second ppKTP waveguide, we prepare the LO. In contrast to
the signal state generation, we stimulate the PDC process by
seeding it with pulses from a carved continuous-wave laser.
Since the process is driven parametrically, wave mixing gen-
erates coherent light in the polarisation mode orthogonal to
the seed [70]. The generated LO is attenuated to the single-
photon level. Crucially, this process prepares a LO with Pois-
sonian photon statistics and a spectrum that is well matched
to the signal. Finally, the LO |β 〉 and signal ρ̂ are combined
on a 90 : 10 beam splitter. We consider the port which uses
|r|2 = 10% of the LO and transmits |t|2 = 90% of the signal.
The light from this port, ρ̂(β ), is then impinged on a 50 : 50
beam splitter for realizing a multiplexing step; both outputs
are then sent to two separate TESs.

Our experiment uses three TES detectors [71], which can
have efficiencies above η = 90% [72]. The TESs are super-
conducting devices operating in a dilution refrigerator with
a operating temperature around 80mK. Their electrical re-
sponse is amplified using an array of superconducting quan-
tum interference devices [73], followed by further amplifica-
tion and filtering at room temperature. This electrical signal
is read by an analogue-to-digital convertor and processed us-
ing a matched filter technique [74], which outputs a single
value. We bin these values to determine the photon number.
We note that although this technique is convenient, alternative
binnings [59] can be used without affecting the applicability
of the DAPS distribution approach.

We record the binned outcome at all three TESs for vari-
ous LO amplitudes (|β |2 from 0 to ∼28 in steps of ∼1). The
amplitude is controlled by varying the seed laser power. To
obtain data for a specific heralded state ρ̂ , we consider the
subset of trials with the appropriate detection outcome (i.e.,
heralding bin kh) at the herald TES.

IV. VERIFICATION OF NONCLASSICALITY

In a first step, we apply our DAPS distribution to uncover
nonclassical features of our prepared states through the viola-
tion of condition (3). The optimal negativity we obtain from

TABLE I. For different heralding outcomes, kh, we show the non-
classicality criteria µmin < 0 and gmin < 0. gmin is defined in Eq.
(6). µmin is the minimal eigenvalue to the second-order correlation
matrix M defined in Eq. (6) of Ref. [58]; see also the SM [60]. “−0”
indicates a slightly negative mean value which rounds to zero.

kh µmin gmin

0 (−0±9)×10−4 (−0±2)×10−9

1 −0.15±0.03 −0.026±0.003
2 −0.10±0.03 −0.017±0.003

the DAPS function [Eq. (2)] is given by the minimum

gmin = min
β

min
z0,...,zK :

|z0|2+···+|zK |2≤1

gz0,...,zK (β ). (6)

To assess the quality of this approach, we compared our verifi-
cation of nonclassicality with other methods. In Ref. [58], we
demonstrated that a correlation matrix, M, obtained from the
measured statistics in Eq. (1), is positive semidefinite for clas-
sical light, described through a nonnegative minimal eigen-
value µmin of M. The resulting notion of sub-multinomial
light, µmin < 0, was shown to be a better figure of merit than
other means of verifying nonclassicality [59], such as sub-
Poisson light [75, 76] and sub-binomial light [77, 78].

The comparison of gmin and µmin for our data is shown
in Table I for different heralding bins kh. For the heralded
one-photon (two-photon) state, we confirm gmin < 0 with 9
(6) standard deviations, while the sub-multinomial behavior
is less significant, 5 (3) standard deviations. Note that for the
vacuum state, i.e., kh = 0, both measures are consistent with
the classical expectation, gmin = 0 = µmin.

V. RECONSTRUCTED DISTRIBUTIONS

From the data, we can directly estimate our DAPS distribu-
tions. The results of our extended analysis are shown in Fig.
2 and discussed in the following. Furthermore, we run the ex-
periment twice: once with the signal blocked, and once with
the signal unblocked.

To have full detector-agnostic approach, it is possible to de-
fine a detector-agnostic coherent amplitude,

|β (DI)|=
√

∑
N0,...,NK

[0N0 + · · ·+KNK ]c
(vac)
N0,...,NK

(β ), (7)

which is given by the statistics c(vac)
N0,...,NK

(β ) measured by
blocking the signal [60]. In case of photocounting, this gives
|β (DI)|=√η |r||β |. As we do not record a phase, we consider
full phase randomization. This does not affect the DAPS dis-
tributions of our heralded photon states. In Fig. 2, our DAPS
distributions Gz are shown as a function of the amplitude in
Eq. (7), determined through the vacuum measurement.

The same measurement renders it possible to theoretically
predict the DAPS distribution of arbitrary states. Namely, a
general DAPS distribution can be described as a convolution



4

FIG. 2. Reconstructed DAPS distributions Gz(β ) [Eq. (4)] as a function of |β (DI)| [Eq. (7)]. We choose z =−1.5 as it would correspond to
a Wigner function (s = 0) in the case of photocounting under the assumption of almost no loss, η ≈ 90%. From left to right, (a)–(c), heralded
kh = 0,1,2-photon states are shown. The dashed lines correspond to the fit model inferred from the data obtained by blocking the signal [60].
The defining structures of the heralded (b) single-photon and (c) two-photon states are the oscillating patterns around the origin |β (DI)|= 0.

of the measured vacuum distribution G(vac)
z and the Glauber-

Sudarshan distribution P(β ′;1) of the state under study [60],

Gz(β ) =
∫

d2
β
′P(β ′;1)G(vac)

z

(
β − t

r
β
′
)
. (8)

In our case, the Gaussian shape of G(vac)
z implies that heralded

single-photon (two-photon) states should follow a Gaussian
distribution multiplied with a first-order (second-order) poly-
nomial in |β (DI)|2. In Fig. 2, this prediction (dashed lines) is
confirmed as it correctly represents the DAPS distributions of
the measured heralded photon states. The heralding to kh = 1
gives a characteristic dip at the origin |β (DI)|= 0, and the two-
photon case, kh = 2, leads to additional oscillations together
with the appearance of a peak at the origin. We emphasize that
the functional behavior β 7→ Gz(β ) depends on the measure-
ment operators, but the estimation of Gz(β ) is done indepen-
dently of the detectors used, cf. first line in Eq. (2). Moreover,
we are able to characterize defining features of other states
without any other prior knowledge about the detectors from
the data obtained using the vacuum state input [Eq. (8)].

Based on our reconstruction, we were able to determine a
number of other properties of the produced states as well [60].
For instance, we can determine how well the DAPS distribu-
tions enable us to discern quantum states. For example, the
single- and two-photon states [plots (b) and (c) in Fig. 2] can
be distinguished from each other with more than 98% cer-
tainty. Furthermore, we can modify the z parameter which de-
fines Gz. We found that for z <−2.4, the central dip of Gz [cf.
Fig. 2(b)] becomes negative, similarly to the behavior of other
known phase-space quasiprobability distributions. Our nega-
tivity has the highest statistical significance for z = −4.85,
where Gz(0) =−0.51±0.08, being more than 6 standard de-
viations below the classical threshold of zero. This comple-
ments the results in Table I, based on gz0,...,zK (β )< 0.

VI. SUMMARY AND DISCUSSION

We developed a theory and realized an experiment to char-
acterize quantum light in phase space that functions for any

type of detector and without performing a prior detector char-
acterization. Our theoretical framework is based on the gener-
ating function, defining our DAPS distribution, which can be
directly estimated from measured correlations in a multiplex-
ing setup. Moreover, we showed that our approach includes
prominent phase-space quasiprobabilities as a special case.
In addition, even more recent phase-space functions [79, 80],
fundamentally restricted to on-off detectors, are encompassed
by our technique.

In our proof-of-concept implementation, we demonstrated
that a single multiplexing step is already sufficient to apply
our DAPS distributions. This rendered it possible to verify the
nonclassicality of multi-photon states, based on DAPS distri-
butions, which resulted in greater statistical significance than
obtained with earlier approaches [58, 59], which themselves
already outperformed previous quantifiers of nonclassicality.
Let us emphasize again that our nonclassicality criterion ap-
plies independently of the employed detectors. Furthermore,
based on measuring vacuum as a reference, we were able to
predict the defining phase-space features of heralded multi-
photon states, which was then confirmed by directly recon-
structing our DAPS distributions from our data. Our exper-
iment comprises state-of-the-art detectors combined with an
advantageous method to create coherent states, well mode-
matched to our nonclassical signal. As our method is detector-
agnostic, an efficiency budgeting becomes vastly meaning-
less; the number of data points merely has to be sufficient to
produce statistically meaningful results.

For future applications, a measurement of the LO’s phase
would be interesting for applying our scheme to phase-
sensitive nonclassical states, such as squeezed states. Fur-
thermore, a generalization to infer nonclassicality with bal-
anced homodyne detection and on-off detectors exists [81].
A similar technique could be used to generalize our results
to other interferometric measurements in a detector-agnostic
manner. In addition, we encounter the imperfections stem-
ming from imbalances by assigning a corresponding system-
atic error. A possible bypass might include more sophisticated
strategies, such as performed for the special case of binary de-
tectors [82]. In conclusion, our detector-agnostic framework
provides a universally applicable instrument for a robust char-
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acterization of quantum light in phase space under challenging
conditions and forms a basis for future research.
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[10] K. Laiho, Katiúscia N. Cassemiro, D. Gross, and C. Silberhorn,
Probing the Negative Wigner Function of a Pulsed Single Pho-
ton Point by Point, Phys. Rev. Lett. 105, 253603 (2010).

[11] T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci,
A. Keller, T. Coudreau, and P. Milman, Direct measurement of
the biphoton Wigner function through two-photon interference,
Sci. Rep. 3, 3530 (2013).
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SUPPLEMENTAL MATERIAL

Appendix A: Details on the experiment

The experimental setup is shown in Fig. 3. Our pump laser
is a titanium sapphire (Ti:Saph) regenerative amplifier that
generates femtosecond pulses (center wavelength 780nm, full
width at half maximum [FWHM] 15nm) at a rate of 100kHz.
This rate is chosen to accommodate the thermal relaxation
time (∼10 µs) of the transition-edge sensors (TESs). We split
the pulses into two paths, each pumping a periodically poled
potassium titanyl phosphate (ppKTP) waveguide.

We pump the first waveguide (right in Fig. 3) using filtered
(center 775nm, FWHM 2nm) pulses from the Ti:Saph. Pump-
ing the ppKTP waveguide generates two-mode squeezed vac-
uum via type-II parametric down-conversion. The pump
is then discarded using a longpass filter. The two down-
converted modes (signal 1554nm, idler 1547nm) are orthog-
onally polarized and separated by a polarisation beam splitter.
Each mode is sent through a bandpass filter (FWHM 10nm).
The idler mode is sent to a TES detector to herald photon-
number states in the signal mode (heralding efficiency∼40%)
by postselecting to a specific outcome kh.

In the second waveguide (left in Fig. 3), we prepare the
local oscillator (LO). Since the first and second waveguides
have slightly different phase-matching properties, a different
pump spectrum (center 783nm, FWHM 2nm) is used. This
pump spectrum is chosen to maximize the spectral overlap
between the LO and signal (SI). We also carve 2ns square
seed pulses from a continuous-wave laser (center 1580nm)
using an electro-optic modulator. The pump and seed pulses
are temporally overlapped and coupled into the second ppKTP
waveguide. Through difference frequency generation, the LO
is generated in the polarization orthogonal to the seed. The LO
is separated from the seed using a polarisation beam splitter.
As before, we discard the pump by a longpass filter. The LO’s
polarization is adjusted with a half-wave plate to match the
SI’s polarization. Then, the LO is sent through a bandpass
filter (FWHM 10nm) to further eliminate seed light as well as
increase the spectral overlap with the signal. Finally, neutral-
density filters attenuate the LO to the single-photon level.

The SI and LO are combined on a 90:10 beam splitter. The
resulting light field of one output then enters the multiplexing
step (50:50 beam splitter) and the then resulting beams are
measured with two TESs. The recorded coincidences give the
detection events E(k1,k2), which we use for our analysis.

In addition, we characterized the mode overlap of the signal
and LO by combining the two on a 50:50 beam splitter. We

consider the specific case of a single photon (kh = 1) and a
weak LO (|β | � 1). By scanning the delay between the SI
and LO, we expect to measure a Hong-Ou-Mandel-type dip
in two-fold coincidences at the output of the beam splitter.
We measured a dip of ∼80% visibility, suggesting that the
mode overlap is at least 80%. By blocking the signal, this
setup constitutes a Hanbury Brown-Twiss interferometer that
allows us to measure the LO’s g(2)(0). We measured g(2)(0) =
1.005±0.002, which is consistent with the expected Poisson
distribution for the LO’s photon statistics.

Appendix B: Details on the theory

1. General approach

Let us formulate some additional details on the theory. As
we can expand any SI state in the Glauber-Sudarshan decom-

FIG. 3. Outline of the setup; see Sec. A for the full description. BP:
bandpass filter, BS: beam splitter, CW: continuous-wave, HWP: half-
wave plate, ppKTP: periodically poled potassium titanyl phosphate,
LP: longpass filter, ND: neutral-density filter, PBS: polarizing beam
splitter, TES: transition-edge sensor.

https://doi.org/10.1103/PhysRevLett.110.173602
https://doi.org/10.1103/PhysRevLett.110.173602
https://doi.org/10.1103/PhysRevLett.114.103602
https://doi.org/10.1103/PhysRevLett.114.103602
https://doi.org/10.1103/PhysRevLett.120.063607
https://doi.org/10.1209/0295-5075/109/34001
https://doi.org/10.1103/PhysRevA.94.053844
https://doi.org/10.1103/PhysRevA.89.043829
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position, ρ̂ =
∫

d2α P(α)|α〉〈α|, it is sufficient to consider
the propagation of coherent states |α〉. Our detection scheme
consists of a combination of the SI with the LO state |β 〉 on a
beam splitter, the multiplexing, and the detection.

Applying a beam splitter transformation, we map an input,
consisting of SI and LO, as follows: |α〉⊗ |β 〉 7→ |tα− rβ 〉⊗
|r∗α + t∗β 〉, where t and r define the trasmissivity and reflec-
tivity (|t|2 + |r|2 = 1). When tracing over the second mode,
we obtain the state that enters the multiplexing stage,

ρ̂(β ) =
∫

d2
α P(α)|tα− rβ 〉〈tα− rβ |. (B1)

Further, the multiplexing distributes the coherent state com-
ponents in Eq. (B1) among the N = 2S output beams, where
S is the depth of the multiplexing scheme, |γ〉 7→ |γ/

√
N〉⊗N ,

resulting in
∫

d2α P(α)[|(tα− rβ )/
√

N〉〈(tα− rβ )/
√

N|]⊗N .
Using some combinatorics (see Ref. [59] for details), we find

cN0,...,NK (β ) =
∫

d2
α P(α)

N!
N0! · · ·NK!

×
K

∏
k=0

〈
tα− rβ√

N

∣∣∣∣ π̂k

∣∣∣∣ tα− rβ√
N

〉
︸ ︷︷ ︸

def.
= pk

(
tα−rβ√

N

)
Nk

, (B2)

where {π̂k}k=0,...,K is an unknown positive operator-valued
measure (POVM) that describes the detector.

Consequently, the two types of generating functions under
consideration read

gz0,...,zK (β ) =
∫

d2
α P(α)

[
K

∑
k=0

zk pk

(
tα− rβ√

N

)]N

(B3)

and

Gz(β ) =
∫

d2
α P(α)

[
K

∑
k=0

zk pk

(
tα− rβ√

N

)]N

, (B4)

using the Glauber-Sudarshan P function. As long as N is even
and P≥ 0, both expressions are necessarily nonnegative.

2. Photoelectric counting with loss

Let us analyze our scheme for the special case of photoelec-
tric counting. A simple photoelectric detection is described
through POVM elements π̂k = :e−η n̂(η n̂)k/k!: for k = 0,1, . . .
(K = ∞), where η is the quantum efficiency and n̂ is the
photon-number operator. In this scenario, the generating func-
tion in Eq. (B4) can be further evaluated [67] and reads

Gz(β ) =
∫

d2
α P(α)exp

(
−[1− z]|t|2η

∣∣∣α− r
t

β

∣∣∣2)
=
〈

: exp
[
−(1− z)|t|2η n̂

( r
t

β

)]
:
〉

ρ̂

,

(B5)

where n̂(γ) is the displaced photon-number operator. Since we
have P(γ;s) = 2(π[1− s])−1〈:e−2n̂(γ)/[1−s]:〉ρ̂ [56], the above
expression can be related to s-paramterized distributions.

Also note that according to the characterization performed
in Ref. [59] (Sec. III), our TESs are more precisely described
through POVMs of the form π̂k = :e−Γ(n̂)Γ(n̂)k/k!: for k =

0, . . . ,K−1 and π̂K = 1̂−∑
K−1
k=0 π̂k. Therein, K <∞ reflects the

finite photon-number resolution, and the response function Γ

has a nonlinear form, Γ(n̂)≈ η n̂+η(2)n̂2, where the quantum
efficiency η is not one (η < 1) and the nonlinear contribution
does not vanish (η(2) 6= 0). As η(2) is small, the nonlinear
behavior mainly affects higher LO and SI intensities.

Appendix C: Coincidences and systematic errors

A single multiplexing step, N = 2, was implemented. Thus,
it is convenient to formulate the data processing in terms of
measured coincidences. For this purpose, we denote with
E(k1,k2) the number of coincidence events for the measure-
ment outcomes k1 and k2 (k1,k2 ∈ {0, . . . ,K}), resembling
the detection bins of the TESs 1 and 2, respectively. E =
∑k1,k2

E(k1,k2) defines the total number of events.
The coincidences are directly related to the desired quan-

tum version of a multinomial distribution, cN0,...,NK , cf. Eq.
(1) in the main text. Since N0 + · · ·+NK = N = 2, we have

cN0,...,NK =


c0,...,0,Ni=2,0,...,0 for 0≤ i≤ K,

c0,...,0,Ni=1,0,...,0,N j=1,0,...,0 for 0≤ i < j ≤ K,

0 otherwise,
(C1)

where we can identify c0,...,0,Ni=2,0,...,0 = E(i, i)/E and
c0,...,0,Ni=1,0,...,0,N j=1,0,...,0 = (E(i, j)+E( j, i))/E. To estimate
the value f of a function fN0,...,NK , we can recast the standard
sampling formula as follows:

f = ∑
N0,...,NK :

N0+···+NK=N

fN0,...,NK cN0,...,NK

= ∑
0≤i≤K

E(i, i)
E

def
= f (i,i)︷ ︸︸ ︷

f0,...,0,Ni=2,0,...,0

+ ∑
0≤i< j≤K

E(i, j)+E( j, i)
E

f0,...,0,Ni=1,0,...,0,N j=1,0,...,0︸ ︷︷ ︸
def
= f (i, j)= f ( j,i)

=
1
E

K

∑
i, j=0

f (i, j)E(i, j). (C2)

See the Supplemental Material to Ref. [58] for the generaliza-
tion to N > 2.

In order to apply the multinomial framework described in
the main text, one has to satisfy the premise that the coinci-
dence statistics is symmetric, E(k1,k2) = E(k2,k1). However,
in reality, this is only true to a limited extent since the beam
splitters in the multiplexing might not be perfectly balanced,
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and the detectors after the multiplexing might have slightly
different responses. In Ref. [58], we provided a rough system-
atic error estimate to account for such imperfections, which is
further refined in the following.

The premises mentioned above state that the coincidences
are symmetric. The actual measurements E(k1,k2) naturally
exhibit a certain amount of asymmetry; if not, no systematic
error needs to be assigned. We can decompose the coinci-
dences as follows:

E(k1,k2) =

(symmetric part)︷ ︸︸ ︷
E(k1,k2)+E(k2,k1)

2
+

(asymmetric part)︷ ︸︸ ︷
E(k1,k2)−E(k2,k1)

2
.

(C3)

Furthermore, assume we estimate a function f (k1,k2) to ob-
tain the mean f = ∑k1,k2

f (k1,k2)E(k1,k2)/E. Inserting the

above decomposition and denoting with f (sym) the value ob-
tained from the symmetric part in Eq. (C3), we apply the
triangle inequality and find

∣∣∣ f − f (sym)
∣∣∣≤ ∑

k1,k2

| f (k1,k2)|
∣∣∣∣E(k1,k2)−E(k2,k1)

2E

∣∣∣∣= ε f ,

(C4)

which is the systematic error resulting from the asymmetry in
the measured data.

As we use the typical quadratic error propagation—rather
than the linear form used for the above derivation—, we re-
place the right-hand-side expression in Eq. (C4) with ε2

f =

∑k1,k2
| f (k1,k2)|2 |[E(k1,k2)−E(k2,k1)]/[2E]|2. Recall that

the general relation between linear and quadratic error ex-
pansion for a function F(x1,x2, . . .) is given by ∆(lin)F =

∑ j |∂F/∂x j|∆x j and ∆(quad)F = (∑ j |∂F/∂x j|2[∆x j]
2)1/2. In

addition, let us remind ourselves that the random error reads
σ f = [( f 2− f 2

)/(E−1)]1/2, which is combined with the sys-

tematic error to give the overall uncertainty, ∆ f =
√

ε2
f +σ2

f .

Appendix D: Sub-multinomial light

We assess our results with our previously derived nonclas-
sicality criteria [58, 59]. Let us briefly recapitulate this ap-
proach and its implementation for a self-consistent reading.
The previously devised method is based on the observation
that a correlation matrix, M, is positive semidefinite for clas-
sical light, i.e., M = (Mi, j)i, j=0,...,K ≥ 0, where

Mi, j =NNi(N j +δi, j)− (N−1)Ni N j

=N2(N−1)(〈:π̂iπ̂ j:〉−〈:π̂i:〉〈:π̂ j:〉) ,
(D1)

with δ denoting the Kronecker symbol. It was shown that
the required first- and second-order moments can be obtained

TABLE II. For the available heralding bins, kh, the minimal eigen-
values µmin of the matrix M are shown. Significant negativities de-
fines the notion of nonclassical sub-multinomial light [58, 59].

kh sub-multinomial
0 −0.0000±0.0009
1 −0.15 ±0.03
2 −0.10 ±0.03
3 −0.17 ±0.07
4 −0.3 ±0.2

from coincidences as [58]

Ni =N〈:π̂i:〉= ∑
k1,k2

(
δk1,i +δk2,i

) E(k1,k2)

E
, (D2)

Ni(N j +δi, j) =N(N−1)〈:π̂iπ̂ j:〉

= ∑
k1,k2

(
δk1,iδk2, j +δk1, jδk2,i

) E(k1,k2)

E
. (D3)

Finally, the minimal eigenvalue µmin of the correspondingly
reconstructed matrix M is computed to probe for positive
semidefiniteness.

The heralding with a TES enables us to generate higher-
order photon-number states. In Table II, we listed the non-
classicality in terms of the criteria µmin < 0 for data with a
coherent amplitude zero. The observed nonclassicality in Ta-
ble II for heralding bins larger than two is no longer signifi-
cant within a three-standard-deviation error margin as the total
number of events E is too small in those cases. For this reason,
we restrict our considerations to heralding bins kh ∈ {0,1,2}.

Appendix E: Local oscillator amplitudes

From the first derivative of Eq. (B5) for the photoelectric
model, we can infer the dimensionless and displaced intensity,

I(β ) =
∂Gz(β )

∂ z

∣∣∣∣
z=1

= |t|2η〈:n̂
( r

t
β

)
:〉ρ̂ (E1)

= ∑
N0,N1,...≥0:

N0+N1+···=N

(0N0 +1N1 + · · ·)cN0,...,NK (β ),

where the latter expression results from the definition Gz(β )=
∑N0,N1,... z

0N0+1N1+···cN0,...,NK (β ). Most importantly, in the
case that the SI is vacuum, we find 〈:n̂(γ):〉|0〉〈0| = |γ|2. We
abstract this observation and define for the general detection
scenario a detector-independent amplitude |β (DI)|=

√
I(β ) =√

∂Gz(β )/∂ z|z=1 for general POVMs and the SI ρ̂ = |0〉〈0|.
This also explains the following Eq. (E2) as well as Eq. (7) in
the main text.

We block the SI to infer the amplitude of the LO. The in-
tensity, here represented through the dimensionless quantity∣∣∣β (DI)

∣∣∣2 = K

∑
i=0

iNi ∈ [0,NK], (E2)
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FIG. 4. The estimated intensity [cf. Eq. (E2)] as a function of the
used setting number n. The slope of the linear fit (orange line) is
0.1. This confirms the intended difference of 1 photon between two
settings when correcting for the 90 : 10 splitting that uses 10% of the
LO intensity.

has been varied, realized via n = 0, . . . ,28 power settings of
the seed laser. These settings have been also applied when the
SI is not blocked. The settings are chosen such that an equidis-
tant intensity grid is generated. This is confirmed through the
linear fit in Fig. 4.

Appendix F: Additional analysis and results

1. Typical data and error estimates

In order to further assess the impact of uncertainties, let us
consider a typical example. In Fig. 5, we depict a typical data
set, there for a single photon (i.e., heralding to bin kh = 1) and
a vanishing LO amplitude (i.e., the setting n = 0).

The resulting (systematic and random) observational errors
for the generating function are depicted in Fig. 6. The ex-
pected trend of monotonicity and the diverging behavior of
the uncertainties as a function of |z| are clearly visible. As
Gz=1(β ) = 1 corresponds to the total probability, which is not
subject to fluctuations, the random error vanishes for z = 1
(Fig. 6, top-left panel). By construction, the systematic errors
are symmetric with respect to z = 0 (top-right plot in Fig. 6).
See also the following discussion in Sec. F 2.

FIG. 5. Raw coincidence data for kh = 1 and β = 0. We recorded
E = 184426 events in K +1 = 5 bins.

FIG. 6. Error composition for the sampling of Gz(β = 0) as a
function of z for the data shown in Fig. 5 [top-left: random error,
σGz(0); top-right: systematic error, εGz(0); bottom: combination of
both random and systematic uncertainties, ∆Gz(0)].

For probing the nonclassicality through the generating
function, obtained as gz0,...,zK (β ) = ∑k1,k2

zk1zk2E(k1,k2)/E,
we compute the eigenvector Z = [z0, . . . ,zK ] to the normalized
coincidence matrix [E(k1,k2)/E]k1,k2=0,...,K that corresponds
to the minimal eigenvalue. For the example under study, we
get Z = [0.228,−0.973,−0.033,−0.001,−0.000]. With this
information, we can now estimate the general generating func-
tion and get gz0,...,zK (β ) =−0.026±0.003 as the optimal neg-
ativity, here for β = 0. The minimum over all measured LO
amplitudes then yields gmin, cf. Eq. (6) in the main text.

2. Optimal quasiprobability distribution and error estimates

We found that the parameter z = −4.85 is optimal in the
sense that Gz(β ) has the most statistically significant negativ-
ity at the origin (see Fig. 7), i.e., −Gz(0)/∆Gz(0) is maxi-
mized. In the plotted scenario, the error estimates ∆Gz(β ) are
rapidly increasing for increasing |β |, which we discuss in the
following based on the sampling formula

Gz(β ) = ∑
N0+···+NK=N

z0N0+···+KNK cN0,...,NK (β ). (F1)

For increasing LO amplitudes, the components of cN0,...,NK (β )
that relate to a higher power of z have a higher contribution
to the estimate of this function. Similarly, |z| > 1 also leads
to a most relevant term that corresponds to a higher power
of z. Recall that the exponent 0N0 + · · ·+KNK relates to the
overall intensity [cf. Eq. (E2)]. Consequently, both a large LO
amplitude and |z| > 1 result in the fact that the contribution
for zp for larger p becomes the most relevant one. Standard
error propagation then implies a relative error scaled by the
large factor p, for increasing LO amplitudes and increasing |z|
values, which also explains why the increase of observational
uncertainties in those scenarios is expected.
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FIG. 7. Radial component of the phase-space distribution of the her-
alded single-photon state (kh = 1) for the optimal value z = −4.85.
For almost all data points with |β (DI)| >

√
0.5, the error estimates

exceeds the plot range while allowing for consistency with expected
mean values close to zero, cf. the discussion in Sec. F 2.

Appendix G: Quantum state discrimination

As our distributions can, in principle, take arbitrary forms
for arbitrary detectors, let us formulate the statistical model
to discriminate states based on the reconstructed phase-space
functions alone. The probability that two distributions, de-
scribed through multivariate random variables X and X ′, are
indistinguishable within a δ -uncertainty can be expressed as

Prob(|X−X ′| ≤ δ ) =

+δ∫
−δ

du
+∞∫
−∞

dz p(X = z)p(X ′ = z+u),

(G1)

where p(X) and p(X ′) are the probability densities of the
uncertainties for the two random variables. We identify

X = [G(kh)
z (β0), . . . ,G

(kh)
z (β28)] and X ′ = [G

(k′h)
z (βn)]n=0,...,28

for different heralded states and LO settings and use a Gaus-
sian error model with a mean and variance that corresponds
to the reconstructed distributions for each measured setting n.
Consequently, we get from Eq. (G1) the following probability
for the discrimination:

Prob
(

G(kh)
z 6= G

(k′h)
z

)
= 1−Prob(∀n : |Xn−X ′n| ≤ δn)

=1−∏
n

+δn∫
−δn

dun

exp
[
− (un−[µn−µ ′n])

2

2∆2
n

]
√

2π∆2
n︸ ︷︷ ︸

=Err
[
|µn−µ ′n |

∆n
+3
]
−Err

[
|µn−µ ′n |

∆n
−3
]
, (G2)

where we set the vector δ to correspond to three com-
bined standard deviations for each setting, δn = 3∆n and
∆n = [∆G(kh)

z (βn)
2 +∆G(kh)

z (βn)
2]1/2, and using the mean val-

ues µn = G(kh)
z (βn) and µ ′n = G

(k′h)
z (βn). Note that Err[z] =∫ z dξ e−ξ 2/2/

√
2π denotes the error function.

For instance, we find for our measured data that the likeli-
hood to discriminate the phase-space distributions for kh from
the one for k′h for z =−1.5 is given by the matrix

[
Prob

(
G(kh)

z 6=G
(k′h)
z

)]
kh,k′h=0,1,2

=

 7.5% 100.% 100.%
100.% 7.5% 98.9%
100.% 98.9% 7.5%

,
(G3)

where “100.%” corresponds to a value which is 100% within
the used numerical precision. Note that the diagonal elements
are nonzero as identical distributions could still represent dif-
ferent states when considering a finite error margin.

Appendix H: Fit model from vacuum measurements

From the measurement in which the SI is blocked (i.e., vac-
uum SI), we can extrapolate the general shape of the phase-
space distribution for photon states, without relying on any
particular detector model. This approach is also used to fit the
reconstructed distributions for the heralding to kh.

Using the data where the signal is blocked, we find that a
Gaussian distribution describes the reconstructed phase-space
distribution for vacuum quite well; see Fig. 8. This infor-
mation can be used to predict the phase-space distributions
of m-photon states as well. Because of Eq. (B4) and the
known representation P(m)(α) = ∑

m
j=0
(m

j

)
j!−1∂

j
α ∂

j
α∗P

(0)(α)

[65], where P(0)(α) describes the delta distribution centered
at the origin, we find that the m-th photon state is given by

G(m)
z (β ) =

m

∑
j=0

(
m
j

)
1
j!

[
|t|2

|r|2

] j

∂
j

β
∂

j
β ∗G

(0)
z (β ), (H1)

where G(0)
z (β ) is experimentally obtained by blocking the sig-

nal (Fig. 8) and which is determined without relying on any
detection models. For deriving Eq. (H1), note that the argu-
ment of the vacuum function implies that a partial integration

0.0 0.5 1.0 1.5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

|β(DI) |

G
z
(β

)

vacuum (blocked signal)

FIG. 8. Phase-space distribution for vacuum, Gz(β ) = G(vac)
z (β ) =

G(0)
z (β ), with z=−1.5. The dashed line corresponds to a fit function

f0 exp[−b|β (DI)|2] for real-valued constants f0 and b.
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of Eq. (B4) with derivatives of delta distributions results in
∂

j
α ∂

j
α∗ f (β − tα/r)

∣∣∣
α=0

= (−t/r) j(−t∗/r∗) j∂
j

β
∂

j
β ∗ f (β ).

From Eq. (H1) and the fit obtained from G(0)
z (β ), we can

therefore predict the phase-space distribution of an m-photon
state. In our case, this means that G(m)

z (β ) is a Gaussian func-
tion multiplied with a fixed mth-order polynomial in |β |2. In
this context, also recall the linear relation between the ac-
tual intensity (via the setting number n) and the detector-
independent intensity in Fig. 4. In addition, it is known (see,
e.g., Ref. [83]) that imperfect heralding for the kind of pho-
ton source used leads to additional noise contributions. For
this reason, our fit for an heralding to the khth bin is de-
scribed through G(kh)

z (β ) = ∑
kh
j=0 f j|β (DI)|2 j exp[−b|β (DI)|2],

which constitutes the generalized fit function used in the main
text [Figs. 2(a)–(c)] and is determined from the vacuum mea-
surements alone and without relying on any detection models.

As a final remark, it is worth mentioning that the above
treatment can be straightforwardly generalized to predict
Gz(β ) for arbitrary states, resulting in Eq. (8) in the main text.
This is based on the fact that the P function of an arbitrary
state can be written as a convolution, P(α) =

∫
d2α ′P(α −

α ′)P(0)(α ′), recalling that the vacuum state is described by
a delta distribution, P(0). Thus, Eq. (B4) implies that Gz of
an arbitrary state, represented through the Glauber-Sudarshan
distribution P, is predicted to resemble the convolution of the
already measured vacuum state’s G(0)

z and P. Even more gen-
erally, we can write

gz0,...,zK (β ) =
∫

d2
α P(α)g(0)z0,...,zK

(
β − t

r
α

)
, (H2)

where g(0)z0,...,zK (β ) =
[
∑

K
k=0 zk pk

(
−rβ/

√
N
)]N

, cf. Eq. (B3),
to predict the phase-space distribution for a state, theoretically
described through P(α), via the measured g(0)z0,...,zK .
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