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Abstract: We present a time-over-threshold readout technique to count the number of activated
pixels from an array of superconducting nanowire single photon detectors (SNSPDs). This
technique maintains the intrinsic timing jitter of the individual pixels, places no additional
heatload on the cryostat, and retains the intrinsic count rate of the time-tagger. We demonstrate
proof-of-principle operation with respect to a four-pixel device. Furthermore, we show that,
given some permissible error threshold, the number of pixels that can be reliably read out scales
linearly with the intrinsic signal-to-noise ratio of the individual pixel response.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Superconducting nanowire single photon detectors (SNSPDs) have become increasingly prevalent
across many areas of optical sensing [1]. They are particularly suited in applications which require
high efficiency, low noise and low jitter when measuring low numbers of photons [2–4]. These
devices do not resolve the number of photons; rather, they fire if at least one photon is incident.
Quasi-photon-number-resolution can be obtained by building arrays of these devices [5–13];
counting the number of detectors which fire places a lower bound on the number of photons
which are incident. Moreover, placing these devices in spatial arrays means that the incoming
light beam may be imaged [14–16]. As the size of these arrays increases, a key challenge is to
read out each pixel, whilst maintaining the attractive properties of the constituent detectors. Since
SNSPDs require cryogenic temperatures to operate, increasing the number of pixels typically
increases the number of readout channels, which in turn increases the heatload of the cryogenic
system.
A variety of readout schemes is presented in [17]. A distinction is made between on-chip

superconducting signal processing, which may be performed by e.g. single-flux quantum (SFQ)
logic (see e.g. [18, 19]) and analogue on chip multiplexing followed by off-chip processing, such
as time [20, 21] and frequency [22] signature read-out.
In the context of photon counting, knowing which pixel information is less important than

knowing how many pixels fire. This can be achieved by connecting the output of each detector in
series, such that the height of the output pulse is linearly proportional to the sum of the number
of pixels which fire. This can be read out with a single electrical readout line, however analysis
of the pulse requires a multilevel discriminator, which may increase the jitter, or splitting the
readout line into several separate time-tagger channels, which quickly increases the hardware
requirements.
To address this, in this letter we present a scalable single channel readout scheme which

can extract the number of pixels firing in a multipixel array. This is achieved by measuring
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both the rising- and falling edge of the electrical pulse arising from a series connection of the
outputs of each pixel, using a suitable time tagger. The arrival time information is retained in the
rising edge, which maintains the intrinsic low jitter of the detectors. The falling edge is related
to the recovery time of the detectors, which increases depending on the number of detectors
which fire. Therefore, the time difference between the rising and falling edges, i.e. the pulse
duration, is also proportional to the number of activated pixels. This implements a rudimentary
time-over-threshold circuit, as has been employed in other contexts [23,24]. As such, information
for both the number of pixels and the photons arrival time is preserved and read out on a single
channel, in principle independent of the size of the array.

2. Measurement Scheme

To demonstrate this approach, we use a four-element multipixel detector wired in series (Fig. 1 (a))
and connect it to the time-tagger. A schematic of the setup is shown in Fig. 1 (b). We generate
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Fig. 1. (a) Circuit diagram of a four-pixel SNSPD (marked in red). Each detector is
connected in parallel with a resistor Rp and connected to a constant current source Ibias (via
a bias-tee of inductance L and capacitance C). The voltage Vout across a load resistor RL is
measured. All detector areas are connected in series to enable a single-channel read-out.
(b) A fiber-coupled diode laser produces light at 1550 nm which is then attenuated and
detected with a four-pixel SNSPD at 0.77 K. The electronic response from the detector is
either measured with a timetagger that is connected with a single electric channel, or an
oscilloscope.

coherent states with a fiber-coupled diode laser (PicoQuant) with a repetition rate of 100 kHz
centered around 1550 nm and a pulse duration of 50 ps. This light is attenuated and detected with
a four-pixel superconducting nanowire detector (PhotonSpot) which is able to generate electrical
pulses with four different amplitudes depending on the number of pixels which detect photons.
The electronic response is either measured with a TimeTagger Ultra (Swabian Instruments) that
is connected with a single electric channel, or an oscilloscope which is used as a reference.
An example of the oscilloscope trace for such a device is shown in Fig. 2 (a). If we neglect

the risetime of the device, we can model this trace by treating each additional pixel as adding
an exponential decay, modulated by some noise of width σv . That is, the detector response
function for n pixels firing scales as nAe−τ/t , where A is the amplitude of a single pixel, and τ is
a characteristic decay constant, independent of the number of pixels. The constants A, τ and
σv depend on the electronics of the detector circuitry. To evaluate the number of pixels which
fire using a measurement in the time domain, we seek the time taken to decay to a particular
threshold a0. This occurs at

t (n) = −τ ln
a0
nA

(1)
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Fig. 2. Oscilloscope traces showing the electric response of the four-pixel detector (a) as an
intensity heat-map. As an example the evaluation of the output signal is shown for three
different thresholds in subfigures (b-d). Here the time difference between the first rising
slope and the first falling slope at the specific threshold is plotted as a histogram. Subfigures
(e-g) shows the comparison between the click probabilities from the oscilloscope reference
measurement (ck , based on pulse height), the time over threshold value from the oscilloscope
(c′
k,OSC) and the time over threshold value from the timetagger (c′

k
). Compare text for further

details.

Thus we have mapped the number of pixels firing to the time above threshold a0 for this simple
device. This equation also demonstrates the scaling of the maximum count rate for this device,
namely logarithmically with the number of pixels n.
Experimentally, this is achieved by the timetagger recording timestamps if the incoming

electrical signal exceeds (rising edge) and deceeds (falling edge) a defined discrimination level.
We investigated 25 different thresholds. Furthermore, in our implementation, an artificial
deadtime of 400 ns is set on the timetagger to avoid extra triggering from electrical noise. The
time-difference between a rising edge and a falling edge is calculated for all detection events and
used as a measure for the pulse height.

3. Click probability evaluation

Based on the oscilloscope and time tagger measurement the click probability can be extracted in
three different ways. For the oscilloscope traces it is straightforward to analyse the pulse height
to determine the click probability ck . Fig. 2 (a) shows that the response functions for the four
detection cases can be well separated at 0.5 µs. While this method is capable of detecting the
click probability with high accuracy, it requires sufficient voltage resolution as well as timing
resolution. As many readout schemes involve timetaggers that can only record events at a specific
threshold we investigate a readout scheme without any voltage resolution. As an example the
time difference between the first rising edge and the first falling edge at a specific threshold is
shown in Fig. 2 (b-d) as a histogram. Counts in a specific area are integrated and ascribe the
click probability c′

k,osc.
The time-over-threshold value can also be recorded directly with a timetagger, bypassing the



oscilloscope entirely, and analysed in a similar way, to extract the click probability c′
k
. The

comparison between all three methods can be seen in Fig. 2 (e-g) showing good consistency
between the methods. A more detailed error analysis of the time-over-threshold scheme is given
in the next section. The form of the measured click distribution is given by the Poissonian photon
number distribution of a coherent state convolved with the four-element multiplexing detector
response.

4. Error Analysis

In order to determine the quality of our new method we compare the time tagger measurement
with the measured oscilloscope traces as shown in Fig. 2 (a).

Fig. 3 shows the comparison between the oscilloscope reference measurement and the
timetagger measurement. Start-stop histograms from the timetagger are analysed for 25 different
trigger thresholds (three examples for 0.0283 V, 0.0162 V and 0.0119 V are shown in Fig. 3 (b)
- (d) respectively) and Gaussian functions are fitted to the histogram (colored-dashed lines in
Fig. 3 (b) - (d)). We will label the kth Gaussian fit gk . These fits are then integrated to extract
the click probability c′

k
for having k simultaneous detection events. In order to compare these

probabilities we calculated the error probability as the relative deviation of these two values

perror,k =

��ck − c′
k

��
ck

(2)

which is shown in Fig. 3 (a). It can be seen that at low thresholds, the error probability is quite
high as the Gaussian functions are highly overlapping. For high thresholds on the other hand
the two, three and four-fold events can be distinguished precisely but the threshold is above the
maximum voltage for the single click event (compare oscilloscope trace in Fig. 2). An optimal
threshold can be found around 0.0162 V where the peaks of the two, three and four event clicks
can be identified and the single click event is still fully visible.
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Fig. 3. Comparison between click probabilities from oscilloscope traces and timetagger
histograms for an ensemble measurement (a). (b)-(d) Start-stop histograms for three example
thresholds are shown including Gaussian fits to extract the click probability c′

k
. Compare

text for further information.



The presented approach based on Gaussian fits requires ensemble measurements. This is a
valid approach for example for state characterisation where the same state can be investigated
repeatedly. For some applications, however, single-shot experiments should be considered, in
which the requirements may be more demanding. Here, the task is to estimate directly the number
of incident photons for each individual run of the experiment, for example when heralding single
photons in the presence of multiphoton events. For this reason we introduced time windows in the
timetagger histogram. If one start-stop event has a time duration within one of these windows we
consider this as an event corresponding to this time window. The upper and lower limits of these
time windows are given by the center positions between the Gaussian fit maxima. We will denote
these limits with uk and lk for the upper and lower limit of the kth time window respectively.
In contrast to ensemble measurements, two sources of error can appear for the single-shot

case. As an example we consider the second time window which should identify events where
two pixels have detected a photon simultaneously. Firstly, we can miss a two-pixel event if the
time duration was too short (and therefore was identified as a one-pixel event) or too long (and
therefore was identified as a three-click event). Secondly, we can misidentify a one-,three or
four-click event as a two-click event if the start-stop time has the appropriate length. We can use
the Gaussian fits gk from ensemble measurements to estimate the magnitude of these two errors.
In general we can write

pmissing click, k = 1 − 1
M ′

k

∫ uk

lk

gk (3)

and
pmisidentified click, k =

1
N ′
k

∑
i,k

∫ uk

lk

gi (4)

with normalization constants M ′
k
and N ′

k
. If the trigger threshold from the timetagger is

low enough such that all events are detected and all Gaussian fits are well separated, these
normalisation factors would be equivalent M ′

k
= N ′

k
. However, physical imperfections causing

overlapping Gaussian fits and thresholds above the maximal voltage of an event require careful
normalisation as shown in Appendix A.

Both errors are shown in Fig. 4. For the single-click event it can be seen that lower thresholds
are well suited to detect these events. The misidentified click probability is low due to the large
separation of the single- and two-click events in the histogram. For high thresholds it can be seen
that an increasing number of clicks are missed as the threshold surpasses the maximum voltage
for this event. At very high thresholds (not shown) the error probabilities for the two-,three- and
four-event cases would also increase. Negative values for the missing click factor indicate that
the calculated probability is higher than the corresponding normalisation constant M ′

k
.This effect

is very pronounced for the four-fold event at low thresholds. Here the the overlap of three-fold
and four-fold events causes an overestimation of the four-fold rate. For the misidentified click
probability it is beneficial to choose high thresholds. Especially the four-click event profits from
higher thresholds as three- and four-fold events have the highest overlap. Misidentified click
probabilities above > 0.0257 V cannot be plotted anymore for the single event case because the
normalisation diverges (no single clicks can be identified).
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Fig. 4. We consider two potential errors for single-shot measurements. (a) Probability of a
missing a click and (b) probability of a misidentified click. Compare text for further details.
Subfigures (b)-(d) show start-stop histograms for three example thresholds including the
time windows (marked with horizontal lines).

Again a threshold around 0.0171 V seems to be optimal to reduce both errors simultaneously.
Details about the calculations of the error bars can be found in the Appendix B.

5. Scaling

It is prudent to consider the scaling of this readout scheme as the number of individual pixels
increases. From Eq. 1, the behaviour of the response function is such that the time gaps between
the response of each pixel get smaller the more pixels fire, i.e. the ratio t (n + 1) /t (n) decreases
with increasing n. Therefore, for a fixed uncertainty in the time t, it becomes harder to distinguish
higher numbers of pixels.

In general, the uncertainty in themeasurement timeσt is the quadrature sum of the contributions
from the detector itself and jitter of the time tagger, however we neglect the jitter as it is typically
much smaller than the noise arising from the detector recovery slope. Using the exponential
decay model of the response given by Eq. 1, we therefore seek the noise in the time domain σt

caused by noise in the voltage response σv . This is the product of σv and the absolute value of
the time derivative of the response function evaluated at a time t, i.e.

σt = σv

����� d
dt

nAe−τ/t
����
t=t(n)

����� = σva0
τ

, (5)

which is independent of bin number n. We consider the noise on the readout to be follow a
Gaussian distribution of width σt and centre positions for each n pixels given by equation 1.
To evaluate the scalability of this readout scheme in principle, we seek the largest number

of pixels nmax that can be successfully read out in this manner, depending on the detector
parameters noise σv , pixel height A, and decay time τ. Our figure of merit is the misidentified
click probability (Eq. 4) of the nmax − 1 bin, which is the “worst case”, since we consider error
contributions from nmax, as well as nmax − 2. We further assume equal likelihood of each bin n



being occupied. A more thorough analysis should consider all error terms from nmax − 3...1,
however we choose to define nmax such that the overlaps from nmax − 3 (and therefore all smaller
bins) is negligible. Furthermore, one may also wish to take into account the probabilities for the
number of pixels firing, which is given by the convolution of the photon statistics of the incident
beam and the splitting function of the multipixel detector (see e.g. [25, 26]).
To evaluate Eq. 4 explicitly, we begin with the Gaussian distribution functions gi , with

i ∈ (nmax, nmax − 1, nmax − 2). For a mean µ = −τ ln a0
iA and standard deviation σ = σvτ

a0
, this is

given by

gi =
a0√

2πτσv

e
−

a2
0

2τ2σ2
v
(t+τln[ a0

i A ])
2

. (6)

We consider the optimal threshold value a0 = A − σv , since this provides the highest threshold
whilst remaining below the noise of the first peak A. We further define the signal-to-noise ratio
β = A/σv as a key detector parameter, such that a0 = σv (β − 1). Making this substitution and
applying Eq. 4, we find that

pmisidentified click,nmax−1 = 1 −
Erf

[
(β−1)
2
√

2
ln

[
nmax

nmax−1

] ]
+ Erf

[
(β−1)
2
√

2
ln

[
nmax−1
nmax−2

] ]
Erf

[
(β−1)
2
√

2
ln

[
n2
max

(nmax−1)(nmax−2)

] ]
+ Erf

[
(β−1)
2
√

2
ln

[
nmax(nmax−1)
(nmax−2)2

] ] , (7)

which is entirely dependent on the signal-to-noise parameter β and nmax, and independent of the
decay time τ. Indeed, this function is closely approximated by the Gaussian distribution given by

pmisidentified click,nmax−1 ≈
2
3

e
− (β−1)2

2ς2 , (8)

where the width ς = a+bnmax, and a = −1.69 and b = 1.64 are numerically determined constants.
Thus a direct relationship can be found between the detector parameter β and the maximum
number of pixels that can be distinguished, up to a given error probability. Furthermore, we note
that additional electronics could be implemented to change the detector response function and
thus the noise scaling. For example, a linear (rather than exponential) decay would lead to an
error probability independent of nmax.
If we tolerate errors of up to a given threshold pth when identifying pixels in a single-shot

configuration, the maximum number of pixels that can be distinguished, as a function of the
signal to noise of the detector β is very closely approximated by

nmax ≈
1
b

©«
β − 1√

2ln
[

2
3pth

] − a
ª®®®®¬
, (9)

with the constants a and b as determined above. Thus the scaling of this readout scheme depends
linearly on the signal to noise ratio of the detector, as illustrated in Fig. 5. This indicates that any
measurement technique which increase the signal-to-noise ratio, such as the use of a box-car
amplifier, will improve the overall scaling of the device.
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Based on the signal to noise ratio of 10 in our experiment, we were able to distinguish 4 pixels
with an error rate around 10%, which is in good agreement with the analysis above.

6. Conclusion

We have presented a proof-of-principle demonstration of a scheme to read out a multipixel
detector with a single electrical line, based on the time-over-threshold pulse length of the device
when each pixel is connected in series. Based on a simple model of the response function of the
device and its noise characteristics, we showed that the scaling of the device is depends linearly
on the signal-to-noise ratio of readout. Therefore, further improvements to the intrinsic circuitry
or amplification, which increase the signal to noise level, are particularly useful at higher pixel
numbers.
With this method, we have shown that the total number of fired pixels can be counted, based

on the same response from each pixel. However, one could consider combining this technique
with a pixel-dependent voltage response, such as shown by Gaggaero et al [27], to enable the
extraction of which-pixel information, which is required for imaging applications.

Appendix

A. Normalization Factors

The missing click factor pmissing click, k should indicate that events are missed, which may be
caused by a threshold level a0 above the detector output voltage A. In order to capture this
behavior the normalisation constant M ′

k
should be calculated for a fixed threshold a0 that is lower

than the corresponding maximal voltage k · A for this k-fold event. We suggest to calculate the
normalisation constant M ′

k
for a threshold a0 between the voltage level of the k − 1 and kth level

M ′k =
∫

gk

���
a0=kA− A

2

. (10)

For our calculations all threshold for M ′
k,1 were calculated at a0 = 2A− A

2 as the error probability
for this threshold is already low enough (compare Fig. 3).
The normalisation for the misidentified click probability pmisidentified click, k is different as we

here consider a post-selected click probability. We are interested in the misidentified click
probability inside the subset of having k events. The size of this subset, which is equivalent to



the desired normalisation constant N ′
k
, is given by the total number of events recognised in the

kth time window
N ′k =

∑
k

∫ uk

lk

gk . (11)

B. Measurement Uncertainties

The error bars shown in Fig. 3 and Fig. 4 are based on Gaussian error propagation resulting in

σperror,k =

√(
∂perror,k
∂ck

· σck

)2
+

(
∂perror,k
∂c′

k

· σc′
k

)2
(12)

σpmissing,k =

√(
∂pmissing,k

∂M ′
k

· σM′
k

)2
+

(
∂pmissing,k

∂gk
· σgk

)2
(13)

σpmisidentified,k =

√(
∂pmisidentified,k

∂N ′
k

· σN ′
k

)2
+

(
∂pmisidentified,k

∂gk
· σgk

)2
. (14)

Here the error σck is based on the statistical uncertainties of the measurement whereas σc′
k
is

based on the fit uncertainty. The experimentally measured histogram gives a discrete function
hexp which is fitted with Gaussian functions gk . The fitting uncertainties are used to calculate a
maximal value for the fit denoted as gmax

k
. We consider the fitting uncertainty and the distance of

the experimental data to the histogram for the overall uncertainty of gk given by:

σ2
gk
=

����∫ gk −
∫

gmax
k

���� + ����∑ hexp −
∫

gk

���� (15)

If the fits are only evaluated in a specific region as used in Eq. 3 then the overall uncertainty of
gk is only evaluated in this region. E.g.

σ2
gk
=

����∫ uk

lk

gk −
∫ uk

lk

gmax
k

���� + ����� uk∑
lk

hexp −
∫ uk

lk

gk

����� (16)
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