
PHYSICAL REVIEW A 100, 041802(R) (2019)
Rapid Communications
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Spontaneous parametric down-conversion (SPDC) is the most widely used method to generate higher-order
Fock states (n � 2). Yet, a consistent performance analysis from fundamental principles is missing. Here,
we address this problem by introducing a framework for state fidelity and generation probability under the
consideration of losses and multimode emission. With this analysis we show the fundamental limitations of this
process as well as a trade-off between state fidelity and generation rate intrinsic to the probabilistic nature of
the process. This identifies the parameter space for which SPDC is useful when generating higher-order Fock
states for quantum applications. We experimentally investigate the multiphoton regime of SPDC and demonstrate
heralded Fock states up to |n〉 = 4.
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I. INTRODUCTION

As a representation of a discrete and well-defined number
of excitations of the quantized electromagnetic fields, photon
number states or Fock states are of significant fundamental
and practical interest in quantum optics. They are the building
blocks from which a range of exotic states may be constructed
[1], and find direct utility in metrology [2–4] and quantum
information processing protocols [5]. Common to all these
applications is that they become more advantageous with the
size n of the Fock state |n〉. However, generating higher-
order Fock states becomes a challenging task and different
approaches have been investigated to generate them [6–10].
To date, the most common process is strongly pumped spon-
taneous parametric down-conversion (SPDC) in a nonlinear
material [11–16].

This consists of a nondeterministic decay of pump photons
into precisely correlated numbers of photons in two modes
(signal and idler). Increasing the number of pump photons
increases the chance of multiple decays, resulting in signal
and idler modes with higher occupation numbers. In collinear
type-II or nondegenerate type-I SPDC, these two modes are
distinguishable (in polarization or frequency, respectively).
The photon number correlations between the modes can be
exploited to “herald” the generation of a particular Fock state:
A projective measurement onto a specific photon number n of
the idler mode will result in the preparation of an |n〉 photon
Fock state in the signal mode (see Fig. 1).

Although heralded SPDC is the most widely used method
to generate higher-order Fock states, a detailed study of
the optimal parameter range beyond the special cases for
heralding more than two photons or Schmidt modes [17–19]
is missing. In particular, the interplay of heralding photon
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numbers arising from different underlying spectral modes
(Schmidt modes) renders this problem highly nontrivial.

In this Rapid Communication we investigate heralded
higher-order Fock state generation based on parametric down-
conversion in terms of fundamental limits as well as unavoid-
able experimental imperfections arising from losses and spec-
tral multimodeness. Furthermore, we compare our findings
with experimental results from a periodically poled potas-
sium titanyl phosphate (PPKTP) waveguide source which has
shown high brightness [16] and which can be engineered
to emit light into a single mode [20]. This implementation
investigates different pump intensities to maximize the gener-
ation probability of higher-order Fock states. To simplify our
analysis, we neglect higher-order nonlinear effects and time
ordering [21,22].

II. THEORETICAL DESCRIPTION

We model the state generated by a type-II SPDC process
with a general two-mode squeezed multispectral-mode PDC
state given by

|ψ〉 =
⊗

k

√
1 − |�k|2

∑
n

�n
k |n, n〉k , (1)

where k labels the modes, �k = tanh(rk ) specifies the squeez-
ing in dependence of the squeezing parameter r, and n is the
photon number. In the scope of this work we will consider
different spectral modes k. The signal or idler photon number
probability pn for each spectral mode in Eq. (1) is given
by a geometric distribution. Without additional experimental
effort it is not possible to distinguish the different spectral
modes with standard photon detectors. Mathematically this is
described by the convolution of the different spectral modes.
Calculating the resulting distribution is a known problem
and has been solved previously with generating functions
[23]. Here, we introduce an alternative approach to derive the
probability distribution exploiting the mathematical concept
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FIG. 1. Generating higher-order Fock states with type-II para-
metric down-conversion (PDC). The signal and idler mode are split
one a polarizing beam splitter (PBS). Losses as well as spectral
multimodeness are considered. For further information, see text.

of discrete phase-type distributions [24]. We are interested
in the probability pn of finding n photons in up to Kmax

modes with minimal computational effort. For our method it
turns out that it is sufficient to know the vacuum probabilities
q = (q1, q2, . . . , qKmax ) with qk = 1 − |�k|2 for the different
modes k. The probability pn is now given by

pn(q) = αMn+Kmax−1M0, (2)

where the matrix M is defined by

M =

⎡
⎢⎢⎢⎢⎣

1 − q1 q1 0 . . . 0
0 1 − q2 q2 . . . 0
0 0 1 − q3 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 − qKmax

⎤
⎥⎥⎥⎥⎦

, (3)

with α = (1, 0, . . . , 0) and M0 = (0, 0, . . . , qKmax )T . An even
simpler solution is possible if all spectral modes have the same
vacuum probability (see Supplemental Material [25]).

From now on, we will assume Gaussian functions for
the pump spectrum and for the phase matching, which is a
valid assumption if, for example, spectral filtering or apodized
poling [26,27] is used. In this case, the squeezing parameter
rk for the kth mode is exponentially decreasing [28],

rk = B λk, λk =
√

(1 − μ2)μk−1, (4)

where B is the optical gain that defines the squeezing strength
and μ ∈ [0, 1) determines the effective number of spectral
modes known as the Schmidt number K = 1/

∑
k (λ4

k ). We
want to stress here that this definition of the Schmidt number
does not depend on the optical gain.

As the general two-mode squeezed vacuum state has per-
fect photon number correlations between the signal and the
idler, heralding is an established method to prepare higher-
order photon number states. However, the quality of this
technique can be severely affected by three main challenges:
fundamental limits resulting from the stochastic nature of the
parametric down-conversion process, losses in the signal and
idler arm, and multimodeness in the SPDC. As a first step, we
start with a spectral single-mode SPDC, as a best case scenario
[20], and analyze the ultimate fundamental limit resulting
from the photon statistics intrinsic to the pair production
process. Considering only the heralding mode (heralded mode
is traced out), the geometric distribution of this thermal state
reveals the maximal heralding probability for an n-photon
Fock state generated by a single-mode source (cf. top inset

FIG. 2. Heralding probability and state fidelity are calculated
for the heralding transmission values of 1.0 (cyan), 0.9 (blue), and
0.5 (red) and a heralded single-photon, two-photon, and five-photon
state. (a) Dependence of heralding probability on the initial optical
gain. The inset shows the maximal generation probability of an
n-photon state for a single-mode source. This value is also indicated
by gray horizontal lines in both figures. (b) Relation of heralding
probability and state fidelity while the optical gain is changed. For
a heralding transmission value of 1.0 (cyan) unit fidelity is always
reached. The bottom inset shows the generation rate for Fock states
under optimistic experimental assumptions (see the main text).

of Fig. 2) of

pmax,K=1(n) = nn

(1 + n)1+n
. (5)

Besides this fundamental limit, as a second step we have
to consider losses, which are unavoidable for any practical
system. We will consider the fidelity to the desired Fock
state in a single spectral mode as a measure for the quality
of the heralded state [29]. As used in Ref. [18] we will use
the heralding probability and the fidelity as the benchmark
parameters.

The effect of losses in the heralding arm (idler) is shown in
Fig. 2, where perfect transmission is assumed for the signal.
Heralding probability and state fidelity are plotted versus
the optical gain which is equivalent to the squeezing value
for a single-mode state. The blue curve assumes a heralding
efficiency of 90%, whereas the red curve is calculated for a
heralding efficiency of 50%. It can be seen that losses in the
idler arm are not critical for the heralding probability because
the photon number distribution of the heralding mode (her-
alded mode is traced out) is a thermal state and thermal states
stay thermal under losses. In principle, a lower transmission
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value can always be counteracted by increasing the squeezing
parameter, i.e., increasing the pump power of the SPDC pro-
cess. The fidelity, on the other hand, is obviously influenced
by losses as photon number correlations between the signal
and idler mode are affected. The effect of loss in the heralding
arm can be decreased by reducing the squeezing value; unit
fidelity can always be reached in principle for vanishing
generation probability. Figure 2(b) illustrates the fundamental
limits of SPDC for higher-order Fock state generation as
well as the trade-off between generation probability and state
fidelity (the heralding probability is limited and cannot reach
the maximum simultaneously with the fidelity). This effect
becomes more pronounced for higher photon numbers and
for higher losses in the heralding arm. In order to calculate
the highest Fock state n that can be generated realistically
with SPDC, we assume optimistic values for an experiment.
We choose a fidelity of 90% with respect to the desired Fock
state as a threshold for acceptable quality. We do not consider
losses in the signal arm and assume perfect emission into a
single Schmidt mode. For the heralding efficiency we assume
an efficiency of η = 90%. This is above the highest value that
has been shown in the literature (see, e.g., Ref. [30]), but may
be achievable in principle. In order to acquire enough statistics
in a reasonable time we aim for a heralding rate of 0.1 event/s.
The maximal repetition rate of the experiment is limited by
the laser system as well as the detection system. Typical laser
systems used for these experiments are Ti:sapphire lasers,
which offer repetition rates around 108 pulses/s, as well as
high energies in transform-limited pulses. We chose this value
as an optimistic value for the repetition rate although the
detection part of the experiment may be slower. The inset
of Fig. 2(b) shows the exponentially decaying heralding rate
versus the photon number under these optimistic assumptions.
As an example it can be seen that only Fock states up to n = 9
can be realized at 0.1 event/s.

As a third step, we need to investigate the effects from
multiple spectral modes. In general, the heralding will project
a multispectral two-mode squeezed state into a state of definite
photon number n occupying an incoherent superposition of
spectral modes, which we refer to as a mixed multimode
photon number state (MMPNS). In contrast, the desired state
is a pure photon number state in a single mode (Fock state),
which requires (inherently lossy) spectral filtering [31] or
spectrally engineering the initial two-mode squeezed state
to reduce the number of modes. Calculating the fidelity for
the heralded multimode state is a nontrivial task which is
explained in detail in the Supplemental Material [25]. The
impact of multimodeness is illustrated in Fig. 3. Here, the
generation probability and state fidelity are shown versus
the optical gain, which is used as the generalization of the
squeezing parameter for the multimode case [cf. Eq. (4)]. The
maximal generation probability increases with more modes
present as the mode distribution goes from being a thermal
state to a Poissonian distribution pmax(n) = e−nnn/n!. How-
ever, this increase comes at the cost of generating a more
mixed photon number state and in fact decreases substantially
the fidelity to the desired Fock state. In contrast to loss, spec-
tral multimodeness cannot be counteracted by lower optical
gain, which means that the Schmidt number limits the fidelity,
as shown in the inset of Fig. 3. The additional decay in the

FIG. 3. (a) Heralding probability and (b) state fidelity vs the
optical gain parameter. For these plots the heralding transmission
value is kept constant at 0.9. Three different Schmidt values of 1,
1.5, and 2 are plotted (blue, green, and yellow curves, respectively).
The inset (b) shows how the Schmidt number influences the maximal
fidelity. Spectral modes up to Kmax = 35 were considered for these
calculations.

fidelity for increasing optical gain (Fig. 3) can be explained
by higher photon number contributions in case of heralding
loss.

III. EXPERIMENTAL SETUP AND RESULTS

To confirm our theoretical findings, we experimentally
generated higher-order Fock states and measured their herald-
ing probabilities and fidelities. For this we used a type-II
parametric down-conversion process (PDC) in a periodically
poled potassium titanyl phosphate (KTP) waveguide. This
crystal is pumped with pulsed light from a Ti:sapphire os-
cillator at 767.5 nm (see Fig. 4). The source is used for
its highly single-mode performance [20] and extremely high
brightness [16]. The spectral purity of this source depends on
the phase matching and pump parameters [32]. Here, we use
a nonoptimal pump bandwidth in order to see an increased
effect of multiple spectral modes [33]. Detection is performed
with intrinsic photon number resolving transition edge sensors
[34] (TESs). These detectors offer near unit efficiency and
extremely high photon number discrimination in the few-
photon regime [35]. Details about the conversion from TES
response functions to photon numbers can be found in the
Supplemental Material [25].

We analyzed the heralding probability and state fidelity
for four different pump intensities. The results are shown in
Fig. 5. Heralding probabilities are analyzed for up to seven

041802-3



JOHANNES TIEDAU et al. PHYSICAL REVIEW A 100, 041802(R) (2019)

Ti:sapph
 BP PBS

200kHz

1535nm

PDC generation TES
1

2
ppKTP WG

4f

TES

Spectral 
shaping

FIG. 4. Experimental setup as used in Ref. [16]. Pulsed light
from a Ti:sapphire laser is spectrally filtered by a 4 f line and coupled
into a periodically poled KTP waveguide. A bandpass (BP) filter
is used to filter out the pump as well as to suppress sinc sidelobes
of the phase-matching function. The signal and idler are split on a
polarizing beam splitter (PBS) coupled into fibers and detected by
intrinsic photon number resolving transition edge sensors (TESs).

photons. State fidelities are evaluated for up to four photons
on the heralding detector. Beyond four photons, the statistical
uncertainties as well as errors arising from photon number
identification (cf. Ref. [35]) become substantial. Colored
lines show fitted curves based on the theory shown above.
Only one set of fitting parameters was used for all curves
(Schmidt number K = 1.61 and ηi = 0.59 and ηs = 0.64 for
the transmission of the idler and signal arm, respectively). The
experimental data can be described with very high precision
with our theory. Error bars are discussed in the Supplemental
Material [25]. Small deviations can be most likely explained
by coupling drifts in the setup between the four measurement
runs.

FIG. 5. Experimental data (points) for (a) the heralding prob-
ability and (b) the state fidelity without correcting for losses vs
the measured mean photon number. Four different pump intensities
were investigated. Colored lines show the theoretical values with
K = 1.61, ηi = 0.59, and ηs = 0.64 as the only free parameters. In
(b) the state fidelity to a mixed multimode photon number state is
plotted whereas the calculated state fidelity to a Fock state is shown
in (c).

The setup shown in Fig. 4 is not able to distinguish spectral
modes to determine the fidelity to a Fock state directly.
Instead, the convolution of all modes was measured and
compared to theory with K = 1.61 (compare Fig. 5). The
corollary of this is that this measurement can be used to extract
the modal behavior even without a mode resolving measure-
ment, by fitting the experimental data with our multimode
theoretical model. In contrast to Ref. [36], this approach is
valid for the strong pump regime where the mean photon
number is larger than one (a similar approach has also been
shown in Ref. [37]).

It can be seen that the measured heralding probability
for different heralded Fock states is higher than the single-
mode theory predicts [e.g., the one-photon curve in Fig. 5(a)
goes above 25%]. This shows the importance of considering
a multimode theory even though fewer than two Schmidt
modes are present. The theory in this Rapid Communication
excludes time ordering, but when searching for time ordering
phenomena the effects presented here should be considered.
Additionally, it can be seen that rather high mean photon
numbers are required to herald higher-order Fock states with
reasonable probability. In order to generate these squeezing
values in a single-pass configuration, waveguided nonlinear
materials are essential. If losses for the signal (heralded pho-
ton) are included (as shown in Fig. 5), more optical gain can be
beneficial to increase the state fidelity. In this case losses and
higher-order contributions increase the generation probability
of the desired state. However, for low signal losses, which are
required for most applications where higher-order Fock states
are involved, the state fidelity is strictly decreasing for higher
optical gain.

IV. CONCLUSION

Spontaneous parametric down-conversion is the most
widely used tool to generate higher-order optical Fock states.
While previous work has mostly elaborated on the structure
of the multimode SPDC state and its impact on single-photon
generation, the preparation of higher-order Fock states brings
additional, nontrivial challenges. In this Rapid Communica-
tion the limitations of this process in terms of generation
probability and state fidelity under the consideration of losses
and spectral multimodeness were investigated. We identified
fundamental limits for the generation of Fock states in SPDC
as well as practical restrictions arising from experimental
imperfections. These cause a trade-off between generation
probability and state fidelity for low signal loss. This means
that high-fidelity Fock states under realistic experimental con-
straints and generation probabilities cannot be realized beyond
n = 9 at 0.1 event/s. We have experimentally investigated
different pump intensities to maximize the generation proba-
bility of higher-order Fock states and showed that waveguided
spectrally engineered sources offer many essential advan-
tages for pulsed SPDC as they allow for high generation
probabilities and single-mode emission. With this result it is
possible to calculate the feasibility of experiments requiring
higher-order Fock states. At the same time this stresses that
alternative approaches to generate higher-order Fock states,
as, for example, shown in Refs. [9,10], need to be explored
further.
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