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Abstract

Waveguides in nonlinear materials are a key component for photon pair sources and offer promising
solutions to interface quantum memories through frequency conversion. To bring these technologies
closer to every-day life, it is still necessary to guarantee a reliable and efficient fabrication of these
devices. Therefore, a thorough understanding of the technological limitations of nonlinear
waveguiding devices is paramount. In this paper, we study the link between fabrication errors of
waveguides in nonlinear crystals and the final performance of such devices. In particular, we first
derive a mathematical expression to qualitatively assess the technological limitations of any nonlinear
waveguide. We apply this tool to study the impact of fabrication imperfections on the phasematching
properties of different quantum processes realized in titanium-diffused lithium niobate waveguides.
Finally, we analyse the effect of waveguide imperfections on quantum state generation and
manipulation for few selected cases. Studying the impact of fabrication errors on the waveguide
widths, we find that the presence of correlated noise plays a major role in the degradation of the
phasematching and we suggest different possible strategies to reduce the impact of fabrication
imperfections.

1. Introduction

Nonlinear optical processes enable complex manipulation of light and have been exploited extensively both in
the classical and quantum regime for a wide variety of purposes, e.g. classical single- and multiple-channel
frequency conversion [1, 2], optical parametric amplification [3], generation of squeezed states and entangled
photons [4-6], frequency conversion for single-photon detection [7-9] and to interface single photons with
quantum memories [10—12]. Realizing nonlinear processes in integrated waveguides is fundamental in bringing
quantum protocols and devices closer to every-day life [ 13]. Integrated nonlinear waveguides offer a few
advantages over bulk nonlinear crystals, since they achieve a stronger nonlinear interaction by increasing the
field confinement over longer lengths and can be interfaced more easily with fibre networks [14]. Moreover, they
can be integrated along with other linear and nonlinear elements to generate and manipulate different quantum
states of light [ 15—18]. However, the nonlinear properties of integrated waveguides critically depend upon their
quality and any fabrication imperfection can degrade the final performance.

In the classical regime, studies have already been performed to understand the relationship between
fabrication imperfections and phasematching properties. In particular, Lim et al [19] introduced the concept of
noncritically phasematched waveguides, i.e. waveguides that are specifically designed to minimise the impact of
fabrication imperfections. They also derived fabrication conditions for noncritically phasematched thin-film
and slab waveguides. Experimentally, noncritical phasematching conditions for SHG have been investigated in
annealed proton-exchanged lithium niobate waveguides [20]. In the field of quantum optics, different studies
have addressed the influence of fabrication imperfections on the generation of photon pairs through parametric
down conversion (PDC) in waveguides [21-23] and photonics crystal fibres [24]. The vast majority of these
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analyses has investigated the connection between fabrication imperfections and maximum conversion
efficiency of the system. For quantum applications, however, other properties become more critical depending
on the intended task of the device, e.g. the phasematching spectrum bandwidth or shape. Therefore, it is
important to analyse the influence of fabrication imperfections in quantum devices bearing in mind their
specific application.

In this paper, we study the impact of fabrication imperfections on the performance of waveguides in
nonlinear crystals. In particular, we analyse a variety of quantum processes realized in titanium in-diffused
lithium niobate (Ti:LN) waveguides and show how their nonlinear performance is degraded by the presence of
errors on the waveguide width.

In section 2.1 we derive a qualitative expression that relates the length of a device to the maximum
fabrication error tolerable. In section 2.2 we apply this relation to estimate the effect of fabrication errors for a
variety of different quantum optics processes of interest realized in titanium in-diffused lithium niobate (Ti:LN)
waveguides. In section 3.1 the effect of different types of fabrication imperfections is investigated by means of
stochastic simulations and in section 3.2 we discuss how fabrication imperfections affect quantum state
generation and manipulation. We focus our attention to the cases of squeezing generation, high-dimensional
frequency bin encoding and efficient bandwidth compression of single photons. Finally, in section 4 we discuss
the results of the simulations and describe possible ways to overcome the fabrication limits that degrade the
phasematching spectrum.

2. Qualitative model for fabrication tolerances

2.1. Mathematical model

We begin deriving a simple model describing the effect of fabrication imperfections on the efficiency of a
nonlinear process. In particular, we assume that the fabrication imperfection is constant along the sample
length. Consider a general three-wave mixing (TWM) process in a waveguide

LL)3:W2+CU1
Af= 05— 2= P

where w; and (; are the frequencies and the momenta of the fields involved, respectively, and i = 1, 2, 3 denotes
the three interacting fields. If the momentum mismatch AS is constant along the waveguide, an exact solution
for the phasematching spectrum ¢(Af) of the process is given by [25]

?(AB) %j: ei2dz = ¢(AB) x sinc( AfL)eiA;L, (1)

where L is the crystal length. In the case of quasi-phasematching, A G has to include the effect of the grating
vector Bqpm = 27/A.

The propagation constants (3; = 27n;/ \; depend on the refractive index #; seen by the light field as it
propagates in the crystal. Fields propagating in a waveguide see an effective refractive index n°™ dependent on the
local refractive index distribution n(x, y, z) [26]. If n(x, y, z) does not vary along the propagation axis z of the
waveguide, then n°" is constant and the waveguide is said to be homogeneous. This assumption simplifies the
treatment of phasematching in waveguide structures and in the rest of this section we will consider this scenario.
The analysis of spatially-varying #°"(z) will be analysed in detail in section 3.1.

Following the approach presented in [19], we consider a homogeneous waveguide designed for a specific
TWM process. For simplicity, we analyse the influence of a single fabrication parameter having a nominal value
fo- Such a parameter can represent, for example, the waveguide width, depth, exchange temperature, etc. Due to
fabrication imperfections, the fabrication parameter f,,,.q during the production can be off from the designed
one by 6f= frod — fo- The fabrication error éf will modify the n° of the waveguide, which in turn has an impact
on Ap. For this reason, a fabrication error 6f will shift the position of the phasematching curve ¢(AS) and
reduce the overall efficiency of the process, as shown in figure 1.

To specify the fabrication tolerances for the waveguide production, we allow variations in A5 such that the
efficiency of the target process remains greater than 50% of the ideal value:

2
sinc(AzﬁL) > 0.5 = %

whereI" &~ 1.39 is the half-width at half maximum of sinc(x)’. Expanding A3 in a Taylor series
AB = AB(fy) + OrABIy, - 8f + o(6f?),

<T, 2
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Figure 1. [llustration of the effect on the phasematching spectrum of a uniform variation f of the waveguide fabrication parameter f.
The solid blue line shows the intensity of a desired nonlinear process for a waveguide with fabrication parameter fq, plotted against the
dimensionless parameter 2L Avariation Of of the fabrication parameter will shift the phasematching curve (dashed—dotted orange
line). For shifts greater than the HWHM of the phasematching spectrum, the efficiency of the target process, represented by the
dashed blue line, drops below 50%. This condition is used to establish a simple criterion to indicate when the fabrication error 6f
moves the process outside the chosen tolerance limits.

and noticing that, for the target process, A3(fy) = 0, we can approximate (2) to the first order as
L
108817, - o] 5 <. 3)

The parameter J;A (3 can be referred to as the process sensitivity to parameter f because it relates the length of
awaveguide to the maximum fabrication error allowable. In fact, assuming a maximum fabrication error of
Ofmaxo from (3) we can determine the maximum waveguide length L., to ensure that the process efficiency is
greater than 50%

2T

=—= 4
0 AL & o

Lmax

Itis therefore clear that any fabrication error poses an unavoidable constraint on the waveguide length.
However, one can see that if |0y A 3] approaches 0, then &f, . tends to infinity. Under this condition, the
waveguide becomes first-order insensitive to the fabrication parameter variations. The condition A3 = 0is
known as noncritical phasematching and has been investigated in detail in previous works [19, 20].

Two main conclusions can be drawn from the analysis presented in this section. Firstly, for a desired process,
there is an inverse proportionality between maximum waveguide length and fabrication errors. This means that
the technological accuracy poses a well defined limit on the maximum length of the waveguides. The second
conclusion is that technological imperfections can be mitigated if the process sensitivity is minimized through
careful waveguide design, thereby approaching noncritical phasematching [19, 20]. It is worth stressing that
these conclusions are independent of the specific waveguide technology or waveguide geometry and therefore
can be applied to all systems described by (1). While the model has been derived for a constant fabrication error,
which will not usually be the case, its predictions still provide a qualitative description of device performance in
the presence of fabrication imperfections, as we will show in the following sections.

2.2. Numerical analysis of |0, A 5| for Ti:LN waveguides

We now apply the previous theory to titanium in-diffused lithium niobate (Ti:LN) waveguides in order to study
the technological limits of this platform. Ti:LN waveguides have been widely used for classical and quantum
applications [5, 6, 27—32]. They exhibit extremely low propagation losses (<0.1 dB cm™ "), can guide both TE
and TM polarization modes, possess high nonlinearity, allow on-chip manipulation of the light field via
integrated beamsplitters and acousto- and electrooptical modulators and can be easily interfaced to fibre
network via pigtailing [14].

As illustrated in figure 2, Ti:LN waveguides are produced by photolithographic patterning of titanium stripes
with definite widths wand thicknesses 7 on top of a LINbO; substrate. Subsequently, titanium is diffused inside
the LN lattice by heating the sample in an oven. The resulting waveguide is defined by the initial titanium stripe
geometry, the exchange temperature and the exchange time. Finally, periodic poling is performed by electric

3



10P Publishing

NewJ. Phys. 21 (2019) 033038 M Santandrea et al

o i-

LiNbO;

b)
Am——

a)

A
=
c)
A

Figure 2. Standard Ti: LiNbO; waveguide fabrication technique. From top to bottom: (a) deposition of a titanium layer on top of the
lithium niobate substrate and spin coating of a photoresist layer; (b) photolithographic patterning of the photoresist; (c) etching of the
titanium to define the Ti stripe to be diffused; (d) diffusion of the Ti stripe in the substrate to define the waveguide.

field poling after photolithographic patterning of the electrodes on the crystal faces. Fabrication errors can occur
at different steps, e.g. inhomogeneous illumination conditions can affect the patterning of the titanium stripes,
or temperature gradients in the diffusion oven can lead to inhomogeneous diffusion of the titanium. All these
imperfections add up and can cause local deviations of the waveguide profile with respect to the ideal,
homogeneous case.

Here we use (4) to study qualitatively the fabrication limits of Ti:LN waveguides. To simplify the treatment,
we choose to consider only one source of error, namely variation of the width w of the Ti stripe (from now on we
will refer to w simply as the waveguide width). In order to estimate 0,,A (3, the effective refractive index of the
guided modes as a function of the wavelength, polarization and waveguide width is needed. We employ a finite
element solver written in Python implementing the model described in [33] to calculate the Sellmeier equations
of waveguides produced with different widths w. The process sensitivity 0,,A3 as a function of w for different
processes is shown in figure 3 for a number of processes of interest for quantum applications, namely: type-0
PDC[6]; type-II PDC[17]; the quantum pulse gate (QPG) [30]; the resonant PDC source described in [31] and
counter-propagating PDC generating photons at 1510 and 1550 nm.

Recall that the waveguide is first-order immune to noise if the condition 9,,A3 = 0is met. Among the
processes considered, only the resonant PDC process is non-critically phasematched in a regime where the
waveguide is single-mode at telecom wavelengths. The type-0 PDC process is noncritically phasematched for
w = 13 pum, but the waveguide is spatially multimode for this width. This is unfortunate as single-mode
operation is often required.

Another important observation is that each process has a different sensitivity; even the ones involving similar
wavelengths exhibit very different behaviour, e.g. type-0 and type-II PDC. Therefore, the process sensitivity has
to be investigated independently for every process under consideration.

Using the calculated process sensitivities, we can estimate the maximum tolerable width error depending on
the desired sample length using (4). The results for type-0 PDC and the QPG are displayed in figure 4. The model
predicts that width errors of |éw| < 0.2 pm already limit the maximum waveguide lengths for these two
processes to around 10 mm. The results for the other processes are reported in the appendix. It is important to
compare the predicted error value with the ultimate resolution of the illumination technologies. Standard
vacuum contact lithographic techniques are limited to resolutions around 0.5-0.8 ;sm [35] and one might
therefore expect waveguide width errors éw in the same range. E-beam lithography can improve the precision by
up to two orders of magnitude. However, techniques with higher precision often present other disadvantages,
such as higher costs, increased processing time or the difficulty in writing long structures. As we will show in the
following section, the estimation provided by the simplified model (éw| < 0.2um) offers a good indication of
the region where fabrication imperfection may start to play arole.
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Figure 3. Calculated sensitivity 9,,A (3 of different processes to variations of the Ti stripe width for Ti:LN waveguides. The processes
analysed are: type-0 PDC (775 nm — 1550 nm, e — ee), type-IIPDC (775 nm — 1550 nm, 0 — eo), quantum pulse gate [30, 34]
(1550 nm + 860 nm — 553 nm,0e — o), resonant PDC[31](532 nm — 890 nm+1320 nm, 0 — eo)and counter-propagating
PDC (765 nm — 1510 nm + 1550 nm, e — ee).
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Figure 4. The dependence of the maximum width error on the chosen waveguide length is shown for type-0 PDC (a) and for the
quantum pulse gate (b). This dependence is shown for different waveguide widths. The plots show that the maximum allowable width
error decreases as 1/L and that wider waveguides are less sensitive to the width error. Note that the 13 ym line in (a) is not present
because it is first-order immune to noise.

3. Phasematching in inhomogeneous guiding structures

3.1. Impact of different noise profiles on the phasematching spectrum

The analysis conducted in the previous sections considered only homogeneous waveguides. However, in reality
fabrication errors can occur randomly along the waveguide, thus leading to the production of inhomogeneous
waveguides, where the refractive index distribution varies along z. For this reason, a spatially-varying fabrication
parameter f,,,4(2) leads to a momentum mismatch A3(z) that varies along the waveguide. In this case

equation (1) does not hold anymore and a more general expression has to be considered [36]

L . [%,,
¢ x %j; elfo AL, (5)

Integration of (5) is possible usually only numerically and by assuming specific profiles for the momentum
mismatch variation A[(z) along the waveguide. Moreover, the phasematching spectrum will not result in the
usual sinc” shape [21-23, 37].

In the past, investigation of waveguides with variable dispersion profiles has been restricted to classical SHG
systems assuming simple profiles for A3(z) [37]. On the other hand, random fabrication errors may
dramatically affect the desired quantum state produced in waveguide systems. Therefore, in the remaining
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Figure 5. Example of the effect of different noise profiles on the phasematching intensity spectrum. In the main plot, the
phasematching spectrum of the waveguides without noise (black dotted line), with additive white gaussian noise (blue dashdotted
line) and with 1/fnoise spectrum (orange solid line) are shown. In the inset, the respective waveguide width profiles are reported. The
device under consideration is a 20 mm long Ti: LiNbO3 waveguide for type-0 PDC 775 nm — 1550 nm, characterized via the reverse

process, SHG.

sections we study the effect of randomly variable dispersion relations in waveguides designed for quantum
processes.

Here we study the phasematching properties of inhomogeneous Ti:LN waveguides as a function of the Ti
stripe width wand its maximum error dw. Generating different profiles for w(z) and calculating the relative
momentum mismatch A((z), we can integrate numerically (5) to calculate the relative phasematching spectra.
The details of the simulations of this section are presented in the appendix, section 2.

For simplicity, we investigate fabrication errors éw(z) characterized by two types of noise spectra, namely
additive white gaussian (AWG) and 1/fnoise. AWG noise describes uncorrelated noise fluctuations along the
waveguide, while 1 /fnoise is characterised by spatial correlations and accounts for long range drifts in the
production parameters. For example, one might expects such long range correlations from illumination
inhomogeneities during the photolithography or temperature gradients during the titanium diffusion. An
example of how these noise spectra affect the width profile and the phasematching spectra is shown in figure 5.

To understand the main differences between the two types of noise, we study the performance ofa 20 mm
long, 7 um wide waveguide designed for a type-0 second harmonic generation (SHG) pumped at 1550 nm. We
investigate the degradation of the conversion efficiency for values of the fabrication error éw € [0, 1.0] pm for
both types of noise. The results of the simulations are presented in figure 6. The two types of noise have very
different impact on the maximum achievable conversion efficiency: AWG noise has a negligible influence, while

1/fnoise can drastically decrease it. Furthermore, the reduction of conversion efficiency is accompanied by an
increase of the phasematching bandwidth, especially for errors éw > 0.25 um, whose broadened phasematching
spectrum is shown in the insets of figure 6.

The same analysis has been performed for the other processes characterized in figure 3 and the results are
similar: AWG noise consistently has a negligible impact on the average maximum conversion efficiency, while
1/fnoise rapidly degrades the performance of the device as éw increases. These results are well in agreement with
previous studies on different systems. The presence of AWG noise on the poling grating of periodically-poled
waveguides has been previously analysed in [21-23] and showed only a minor influence on the maximum
conversion efficiency. Moreover, a comparison between correlated and uncorrelated noise has been investigated
in photonics crystal fibres, showing that imperfections with long range correlations drastically affect the
parametric gain of nonlinear processes [38]. In the rest of the paper, we will focus our attention exclusively on
the effects of 1 /fnoise, since this is the main cause of phasematching spectrum distortions.

Having established a framework suitable for the study of waveguide inhomogeneities, we can now compare
the approximate results derived in section 2 with numerical simulations. An important result was the ability to
predict design of noncritically phasematched waveguides. In particular, we calculated that a type-0 PDC process
pumped at 775 nm is noncritically phasematched for w = 13 pm. This result is confirmed by evaluating the
conversion efficiency of the reverse process, a type-0 SHG pumped at 1550 nm, as a function of the waveguide
width wand the error 6w in presence of 1 /fnoise. Indeed, figure 7 shows thata 13 yum wide waveguide is
practically immune to 1/fnoise when close to noncritical phasematching. Moreover, from the calculations
reported in figure 4(a), we expect thata 7 ym wide, 20 mm long waveguide will be sensitive to noise values
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Figure 6. Maximum efficiency of a nonlinear process as a function of the waveguide width error for the ideal waveguide (black dotted
line), a waveguide with AWG noise (blue solid line) and 1 /fnoise (orange dashdotted line). Shaded regions correspond to the standard
deviation resulting from the simulation of 40 different systems for each datapoint. The insets show the comparison between the
average phasematching spectrum in the presence of 1/fnoise and the ideal one (in black, dotted line). The shaded area represents the
standard deviation of the simulated intensity spectra. A broadening of the average phasematching spectrum, more prominent side
lobes and reduction of the efficiency are evident. The device under consideration isa 20 mm long Ti: LiNbO; waveguide for type-0
PDC775 nm — 1550 nm, characterized via the reverse process, SHG.
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Figure 7. Maximum efficiency of a nonlinear process as a function of the waveguide width error, in the presence of 1 /fnoise. The three
different curves are calculated for nominal widths of 7 ym (blue dotted line), 13 pum (orange solid line) and 18 pm (green dashed line).
Shaded regions are the standard deviation resulting from the simulation of 40 different systems for each datapoint. Note that the

13 pum waveguide is noncritically phase matched and so is virtually immune to the presence of noise. The device under consideration
isa20 mm long Ti:LiNbO 3 waveguide for type-0 PDC 775 nm — 1550 nm, characterized via the reverse process, SHG.

ow > 0.1 um. Asshown in figure 7, for éw > 0.1pm, the maximum efficiency rapidly degrades below 90% of
the ideal maximum. This confirms that the simplified model can provide reliable qualitative information about
the waveguides’ sensitivity to noise and thus the evaluation of the process sensitivity is can provide useful
technological boundaries for the process quality of waveguide production.

3.2. Applications

The theory presented so far is now applied to three different systems of interest in quantum optics. In fact, we
will show that it is necessary to consider the impact of fabrication errors in these systems to correctly model and
estimate their performance. In section 3.2.1 we analyse the effect of waveguide inhomogeneities on the
maximum squeezing attainable in a waveguiding system; in section 3.2.2 we estimate how noise reduces the
maximum number of bins in a frequency-bin encoding (FBE) scheme; in section 3.2.3 we study the effect of
waveguide width noise on the bandwidth compression factor of a frequency conversion device.
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Figure 8. Normalised conversion efficiency as a function of the error on the waveguide width, for lossless samples of varying lengths. It
can be seen that both the length of the sample and the magnitude of the width error have a strong impact on the normalized conversion
efficiency, even in the absence of losses. The device under considerationisa 7 ysm wide Ti:LiINbO 3 waveguide for type-0 PDC 775 nm
— 1550 nm, characterized via the reverse process, SHG. The shaded areas correspond to the standard deviation of the simulated data.

3.2.1. Impact of fabrication errors in squeezing generation
We first consider a waveguide structure designed to produce continuous-wave (CW) single-mode squeezed
states in a single-pass configuration. These states are the foundation for continuous-variable (CV) quantum
optics: they can be used as a basis for CV quantum computing [39], they have been used to generate complex
quantum states such as EPR entanglement [40] and CV cluster states [41], and they have been used in sensing
and metrology in order to improve the sensitivity of measurements, e.g. in gravitational-wave astronomy [42].

We consider here a7 pm wide Ti:LN waveguide pumped at 775 nm that produces type-0 squeezing at
1550 nm in a single-pass configuration. It can be shown that both the losses of the fundamental field and the
strength of the nonlinear process are critical to the amount of squeezing produced [43]. We begin by neglecting
the losses, thereby exclusively investigating the effect of waveguide width imperfections on the strength of the
nonlinear process. The strength of the nonlinear process can be found by performing SHG in such a sample,
from which one can calculate the normalized conversion efficiency using

Psy

nnorm = PF%FLZ * (6)

A common misconception is that, due to its definition, 7,01, is independent of length. However, the qualitative
model presented in figure 4(a) shows that longer waveguides are more susceptible to fabrication imperfections,
therefore we expect 7),0:m to be dependent on waveguide length.

To calculate 7,0, in presence of fabrication errors, we numerically simulate the phasematching spectra of
the system for different sample lengths L € [10, 60] mm and width error magnitude éw € [0,0.5] yum. For each
parameter combination, we calculate the maximum conversion efficiency of 40 randomly generated systems to
estimate the average normalized conversion efficiency. From figure 8, it is evident that the normalized
conversion efficiency is critically dependent on both L and éw. The simulations reveal that both 7,0, and the
waveguide length of each sample are necessary to fairly compare the performance of different devices.
Furthermore it can be seen that the normalized conversion efficiency drops from 49 to 40% W cm ™~ for 10 mm
long waveguides and below 15% Wcm ™ for 60 mm long waveguides. Therefore, it is clear that 7, is not a
good parameter to compare the performance of samples with different lengths.

From the calculated normalized conversion efficiencies, one can estimate the amount of squeezing that can
be produced in this device. Following [43], the maximum squeezing S achievable in a single-pass CW waveguide
can be given by

S = (e XhomPinle=aly 4 1 — e=ol, 7)

where Pj, is the input pump power of the squeezer and « is the loss for the squeezed field. We assume a negligible
effect of the losses for the 775 nm pump. We consider P, = 500 mW at 775 nm and propagation losses « equal
t00.1 dB cm ™, a safe estimate of the average losses measured in Ti:LN waveguides [6]. The squeezing S
produced as a function of L and éwis shown in figure 9. It can be seen that, for a given éw, there exists a waveguide
length that maximizes the squeezing produced. Moreover, this optimal length increases as the magnitude of the
width error increases. This is due to a complex interplay between the nonlinear interaction strength and the

8



10P Publishing

NewJ. Phys. 21 (2019) 033038 M Santandrea et al

0.5 1 —_
—4m
5,
2
0.4 1 -55
c
o+
2
— 0.3 ~6q
g <
— [0
2 72
@ 0.2 E
g
c
0.1 N
9%
=]
]}

0.0 -

10 20 30 40 50 60

Length [mm]

Figure 9. Squeezing relative to shot noise exiting the waveguide for samples with different lengths and widths error. The process is
pumped with 500 mW of CW input at 775 nm. Losses for the fundamental field are assumed to be 0.1 dB cm ™. The device under
considerationisa7 ymwide Ti: LiNbO; waveguide for type-0 PDC 775 nm — 1550 nm.

losses; as the waveguide length increases, the positive effect of an increase in the interaction length is
counteracted by an increase in the total losses and a simultaneous reduction of the normalized conversion
efficiency. The simulations show that the system under investigation (with 500 mW of pump power) can
produce around —9.5 dB of squeezing, choosing a waveguide with an optimized length of 40 mm, if the error is
below éw < 0.1 um.

To reduce the impact of fabrication errors, one can consider the use of noncritically phasematched systems.
For the system under consideration, this can be done by choosing a 13 ym wide waveguide, as shown in figures 4
and 7. In this case we expect a normalized conversion efficiency that is independent of the waveguide length and
the fabrication imperfections. Note that insensitivity to fabrication imperfections is equivalent to having no
fabrication imperfection. Therefore, the squeezing produced in a noncritically phasematched waveguide
corresponds to the values at éw = 0 pum in figure 9, neglecting a minor deviation in 7,0, due to differences in
the overlap of the interacting fields in the wider waveguide.

3.2.2. Impact of fabrication errors on quantum information encoding

FBE is an attractive scheme for the implementation of quantum information processing protocols because it
offers an unbounded space for high-dimensional encoding compatible with standard fibre networks.
Furthermore, FBE can be implemented using PDC sources, which are a versatile and tunable platform that has
been developed for many years.

Here, we study the limitations of Ti:LN waveguides as pulsed PDC sources for FBE and evaluate the impact
of fabrication imperfections on such systems. We consider a type-0 PDC source in a Ti:LN waveguide, pumped
at 775 nm, generating pairs of frequency-bin entangled photons in the telecom C-band, between 1530 and
1570 nm. The physical device is analoguous to the one presented in [44]. Typically, PDC sources for FBE are
pumped with CW light [44, 45], however, pulsed systems provide advantages in terms of synchronization
between the communicating parties. Therefore, we consider a pulsed pump laser with a pump bandwidth
matching the phasematching bandwidth.

FBE benefits from having a large number of encoding bins; however, it is also important to minimize cross-
talk between them. As a compromise between these two factors, we define the frequency-bin bandwidth Ab as
the full width at half maximum (FWHM) of the phasematching spectrum and each bin is separated by Ab/2, as
illustrated in figure 10. From this definition, given the available frequency band A, one can calculate the
number of available bins 71,

AN
1.5Ab°

where A\ = 40 nm is the bandwidth of the telecom C-band. The number of available bins is then used as a
figure of merit for the system. The bin bandwidth Ab is extracted from the phasematching spectrum by fitting it
with a Gaussian and taking the FWHM of the fit.

This analysis is applied for varying sample lengths L and width error magnitudes é$w and the results of the
calculations are shown in figure 11. Solid lines represent 7 um wide waveguides, while dashed ones represent
13 pim wide waveguides. Shaded areas represent the standard deviation of the data, as calculated from the

®)

Nbins =
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phasematching bandwidth, and distance between bins equal to half the FWHM as shown by the overlayed grid.

©
o
L

L =60.0mm

~
o
L

[=2)
o
L

wu
o
L

E
o
L

w
o
L

N
o
L

Maximum possible number of bins
=
o

0 T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Sw [pm]

Figure 11. Maximum number of bins available for a frequency-encoded HDQKD protocol. A 1/fnoise spectrum with maximum
error 6w has been considered. The bin size is set to be equal to the phasematching FWHM and the distance between the channels is half
the FWHM. Solid lines are for a7 um wide waveguide, dashed line for a 13 ;sm wide waveguide. The shaded areas correspond to the
standard deviation of the simulated data. Since the 13 ;um wide waveguide is noncritically phasematched, the standard deviation is
practically zero and barely visible in the figure.

simulation of 40 random samples for each datapoint. Note that, in the presence of a spectrum with multiple
peaks and sidelobes, it can be difficult to define a main peak for the Gaussian fit. This sometimes results in an
underestimation of the phasematching bandwidth, leading to a higher number of bins in comparison to the
noiseless case (for example, this effect can be seen in figure 11 around éw = 0.1 ym for L = 60 mm). The
simulations show that it is possible to implement more than 70 bins in a 60 mm long, provided that fabrication
errors are minimal. However, for the 7 zm wide waveguides, the number of bins available in longer waveguides
drops rapidly with increasing width error to a minimum of approximately 10. The reason is that longer samples
theoretically have much narrower phasematching bandwidth and these are much more susceptible to
fabrication errors, as highlighted in section 2.1. Therefore, in the presence of large fabrication errors, the
maximum number of bins becomes, on average, independent of the sample length. In contrast, the 13 ym wide
waveguides do not show a reduction in the number of bins as the noise increases, as can be seen from the dashed
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Figure 12. Bandwidth compression factor resulting from the up-conversion of 963 GHz broad telecom photons, using the quantum
pulse gate [34]. The compression factor has been calculated for different waveguide width errors éw and lengths L, in presence of noise
with 1/fnoise spectrum. Moreover, two different nominal width have been investigated, namely w = 7 ymin figure 12(a)and 13 pm
in figure 12(b). The solid lines correspond to the average bandwidth compression factors, while the shaded areas indicate their
standard deviation. The experimental value reported in [34] is also shown as a dashed black line in both plots for comparison.

lines in figure 11. This is due to the fact that they are noncritically phasematched and therefore immune to
fabrication errors.

3.2.3. Impact of fabrication errors on the performance of a bandwidth compressor

Interfacing components operating at different wavelengths is a critical challenge for quantum optical networks.
Reduction of transmission losses is paramount in most applications and therefore transmission in the telecom
C-band is desired, where losses are minimal. However, many quantum devices operate outside this frequency
band and therefore efficient frequency conversion between these bands is required. Furthermore, it is often
necessary to efficiently match the bandwidth of different quantum devices. Both bandwidth matching and
frequency conversion can be efficiently achieved in the integrated QPG, a device that implements type-1I sum
frequency generation in a waveguide [34].

The integrated QPG in [34] was implemented in a7 ym wide, 27 mm long Ti:LN waveguide, designed to
convert single photons from the telecom C-band to 550 nm. The measured bandwidth compression factor
(BCF) was Avy,/ Avgye = 7.47 £ 0.01, where Avy, /o, is the spectral bandwidth of the input/output photons.
In this device, the compression factor is directly related to the phasematching bandwidth: the narrower the
bandwidth, the higher the compression factor. We have already shown in section 3.2.2 that fabrication
imperfections can increase the phasematching bandwidth of a given process. Therefore, we expect that the
compression factor will reduce in the presence of fabrication imperfections.

We consider a 7 um wide waveguide with different lengths L and varying magnitude éw of 1 /fnoise on the
waveguide width. The input bandwidth is set to Av;, = 963 £+ 11 GHz as in [34], while the output bandwidth
AV, is defined as the FWHM of a Gaussian fit to the phasematching spectrum, following the method of [34].

Each datapoint has been simulated 40 times and the results are shown in figure 12(a). The calculated BCFs
are represented in solid lines, while the shaded regions represent the standard variation of the simulated data.
Simulations show that a 40 mm long sample provides a BCF of ~64, in the absence of fabrication imperfections.
This corresponds to an output bandwidth of ~15 GHz or, equivalently, a 30 ps long pulse, under the
approximation of Gaussian phasematching spectrum.

In figure 12(a) it is also shown, with a dashed line, the BCF measured in [34] for their 27 mm long waveguide.
Itis immediately evident that the measured compression factor is well below the theoretically predicted value. In
fact, calculations show that a 27 mm long sample should provide a compression factor close to 45 in the absence
of imperfections; however, the experiment measured a compression factor of only 7.45. Such a reduction would
only be expected in the presence of width error éw > 0.4 um, asillustrated in the figure.

Allgaier et al [34] also characterized the phasematching spectrum of their device and the measurement
showed deviations from the expected sinc® profile, as shown in figure 13. These deviations indicates the presence
of non-negligible fabrication imperfections, as it was shown in figure 6 that the presence of 1/fnoise leads to
more prominent side lobes and an asymmetric phasematching profile. Assuminga 1/f-noise profile and
éw = 0.4 pm, simulations have been able to reproduce the asymmetry and the prominent side lobes present in
the measured phasematching spectrum, as can be seen comparing the measured and simulated spectra in
figures 13(c) and (b), respectively.
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Figure 13. Theoretical versus experimental performance of the bandwidth compression device presented in [34]. In figure 13(a) the
ideal phasematching spectrum is shown and can be compared with the measured one shown in figure 13(b). A spectrum similar to the
measured one can be produced assuming a 1/fnoise on the waveguide width and a maximum width error éw = 0.4 yim, as shown in
figure 13(c). Panel (b) reproduced from [34]. CC BY 4.0.

The limited compression and the shape of the phasematching spectrum lead us to conclude that the presence
of fabrication imperfections limits the performance of the device presented in [34]. A previously discussed
method to overcome these limitations is to design the process to be noncritically phasematched. Although
figure 3 shows that noncritical phasematching cannot be found for the QPG, it is possible to reduce the process
sensitivity by increasing the waveguide width. Figure 12(b) shows the calculated BCFs fora 13 psm wide
waveguide as the length and the magnitude of the noise are varied. The results show a greatly reduced sensitivity
to noise, as large fabrication errors have alower impact on the BCF. These systems would reliably permit BCFs
above 40, resulting in pulses with bandwidths below 25 GHz. Interestingly, these bandwidths correspond to
pulses longer than 20 ps at 550 nm, a regime that is often difficult to reach. These results highlight the fact that
proper system design can have a drastic impact on the final performance of such devices.

4. Discussion

So far, we have shown that fabrication imperfections in integrated nonlinear systems limit the useful length and
maximum efficiency of the devices. A natural question is then how to overcome these limitations and optimize
device performance. Three general methods can be employed to improve the overall efficiency of the devices:
reducing the magnitude of fabrication imperfections, designing the process to be insensitive to fabrication errors
and reducing the impact of fabrication imperfections by using shorter waveguides.

Whilst it may be possible to reduce the magnitude of fabrication imperfections for a given production
process, these devices are often realized using state-of-the-art technology and it may not be possible to make
further improvements. In any case, the unavoidable presence of technological errors during waveguide
production will impose an ultimate limit to device performance. It is therefore crucial to devise other methods to
overcome these limits.

One solution is to design the process to reduce the sensitivity to fabrication errors, as discussed in 2.1. Ideally,
one would design waveguides in a noncritically phasematched regime [19]; however, this is not always possible,
as shown in figure 3. Nevertheless, choosing the appropriate design will minimize the process sensitivity and
reduce the impact of fabrication imperfections, as discussed at the end of section 3.2.3.

Another method to reduce the sensitivity to fabrication errors is to choose shorter waveguides; an
unavoidable drawback is the reduction of the conversion efficiency. This can be compensated for by employing
multi-pass schemes, e.g. double-pass systems or cavity configurations. This technique, well suited for CW
systems [6], removes the need for long waveguides at the cost of increased device complexity.

5. Conclusions

In this paper we derived a framework to study the limits posed by fabrication imperfections on the nonlinear
performance of waveguide devices. A qualitative model was first developed to describe the effect of fabrication
imperfections on the performance of nonlinear waveguides. This model showed that long waveguides are more
susceptible to fabrication errors occurring during the production. A quantitative model was then introduced,
which is able to account for inhomogeneities along the length of the waveguide. We applied this model to Ti:LN
waveguides to study the impact of width errors on the resulting phasematching spectrum. We discovered that
width errors with long range spatial correlations lead to a reduced conversion efficiency and a distortion of the

12


https://creativecommons.org/licenses/by/3.0/

10P Publishing

NewJ. Phys. 21 (2019) 033038 M Santandrea et al

phasematching spectrum. Finally, we studied the impact of imperfections on three prominent quantum
processes. Despite each process having different figures of merit, e.g. conversion efficiency or phasematching
bandwidth, the performance of each process was found to be limited by the presence of fabrication
imperfections. Therefore, it is crucial to take fabrication imperfections into account when designing quantum
optics devices.
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Appendix A. Sensitivity to noise of the processes studied in figure 3

In figure A1 we report the relation between the maximum width error and the waveguide length for different
waveguide widths, for the processes analysed in figure 3 but not shown in figure 4. The three processes show very
different behaviours. Counter-propagating PDC exhibits a very high sensitivity to waveguide width error,
therefore the implementation of this process in LN waveguide will be particularly challenging. On the other
hand, the resonant PDC source shows a very low sensitivity to fabrication errors, suggesting that samples much
longer than 2 cm could be produced reliably. These simulations show the dramatic differences in process
sensitivities of different devices, again highlighting the need for system design that accounts for the effect of
fabrication errors.
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Figure A1l. Analysis of the sensitivity for different processes the process analysed in figure 3 but not shown in figure 4. The curve for
w = 7 pumis missing from (b) since the system is non-critically phasematched and therefore insensitive to noise.
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Appendix B. Mathematical models of the waveguide noise

To simulate the effect of errors on the waveguide width, knowledge of the effective refractive index n°" of the
waveguide for variable waveguide widths and for different wavelengths is required. Therefore, using a FEM
solver implemented in Python we computed the values of n° for waveguide widths w in the range [5.5, 22] im
in steps of 0.5 um, in the wavelength range from 400 to 1700 nm for both TE and TM polarizations. These values
are used to calculate

(B.1)

Aﬁ(z) _ zﬁ{neff()\3, z) _ I’leff()\z, 2) B neff(/\b Z)}

A3 A Al

as a function of the waveguide width for the different processes analysed.
To simulate a single instance of a waveguide of length L, a mesh of N points spaced by Az=50 pzm is first
generated. A random waveguide profile with the desired noise spectrum is then generated as follows.

1 1

1
T2z T 2Az L

(i) Create avector of spatial frequencies f, = 7

in steps of Af =

(ii) Generate the spectrum of the noise Cy = %ei‘ﬁk fork € [fg, %], where v = 0 for AWG noise and y = 1

k
for pink noise and ¢y is a random variable uniformly distributed in [0, 27]. In order to ensure a real-valued
noise profile, we pose the condition ¢y = —¢_;.

(iii) Take the inverse fast Fourier transform of the spectrum { C;} and normalise it to have a mean value of w and
maximum deviation of |6w/.

Different random instances of the same noise spectrum are generated simply by randomly sampling the phase
¢ Once the width profile w(z) is generated, we calculate the spatially-dependent momentum mismatch AG(z)
using the width-dependent Sellmeier equations previously derived. Finally, equation

Loh i ased
¢ x ff eJo dz (B.2)

0

is discretised as

N iazy (Ag,- 2
o= B2 AR BnT) (B.3)
L n=0

and the phasematching spectrum is evaluated by computing A(z,,,) at each mesh point z,,,, given the local
waveguide width w(z,,,). Note that (B.3) already provides the phasematching spectrum normalised per unit
length and |¢|? will always have a maximum value of 1 (in the case of ideal phasematching) or lower.
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