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Abstract
Waveguides in nonlinearmaterials are a key component for photon pair sources and offer promising
solutions to interface quantummemories through frequency conversion. To bring these technologies
closer to every-day life, it is still necessary to guarantee a reliable and efficient fabrication of these
devices. Therefore, a thorough understanding of the technological limitations of nonlinear
waveguiding devices is paramount. In this paper, we study the link between fabrication errors of
waveguides in nonlinear crystals and the final performance of such devices. In particular, wefirst
derive amathematical expression to qualitatively assess the technological limitations of any nonlinear
waveguide.We apply this tool to study the impact of fabrication imperfections on the phasematching
properties of different quantumprocesses realized in titanium-diffused lithiumniobate waveguides.
Finally, we analyse the effect of waveguide imperfections on quantum state generation and
manipulation for few selected cases. Studying the impact of fabrication errors on thewaveguide
widths, we find that the presence of correlated noise plays amajor role in the degradation of the
phasematching andwe suggest different possible strategies to reduce the impact of fabrication
imperfections.

1. Introduction

Nonlinear optical processes enable complexmanipulation of light and have been exploited extensively both in
the classical and quantum regime for a wide variety of purposes, e.g. classical single- andmultiple-channel
frequency conversion [1, 2], optical parametric amplification [3], generation of squeezed states and entangled
photons [4–6], frequency conversion for single-photon detection [7–9] and to interface single photonswith
quantummemories [10–12]. Realizing nonlinear processes in integratedwaveguides is fundamental in bringing
quantumprotocols and devices closer to every-day life [13]. Integrated nonlinear waveguides offer a few
advantages over bulk nonlinear crystals, since they achieve a stronger nonlinear interaction by increasing the
field confinement over longer lengths and can be interfacedmore easily with fibre networks [14].Moreover, they
can be integrated alongwith other linear and nonlinear elements to generate andmanipulate different quantum
states of light [15–18]. However, the nonlinear properties of integratedwaveguides critically depend upon their
quality and any fabrication imperfection can degrade the final performance.

In the classical regime, studies have already been performed to understand the relationship between
fabrication imperfections and phasematching properties. In particular, Lim et al [19] introduced the concept of
noncritically phasematchedwaveguides, i.e. waveguides that are specifically designed tominimise the impact of
fabrication imperfections. They also derived fabrication conditions for noncritically phasematched thin-film
and slabwaveguides. Experimentally, noncritical phasematching conditions for SHGhave been investigated in
annealed proton-exchanged lithiumniobatewaveguides [20]. In the field of quantumoptics, different studies
have addressed the influence of fabrication imperfections on the generation of photon pairs through parametric
down conversion (PDC) inwaveguides [21–23] and photonics crystalfibres [24]. The vastmajority of these
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analyses has investigated the connection between fabrication imperfections andmaximumconversion
efficiency of the system. For quantumapplications, however, other properties becomemore critical depending
on the intended task of the device, e.g. the phasematching spectrumbandwidth or shape. Therefore, it is
important to analyse the influence of fabrication imperfections in quantumdevices bearing inmind their
specific application.

In this paper, we study the impact of fabrication imperfections on the performance of waveguides in
nonlinear crystals. In particular, we analyse a variety of quantumprocesses realized in titanium in-diffused
lithiumniobate (Ti:LN)waveguides and showhow their nonlinear performance is degraded by the presence of
errors on thewaveguide width.

In section 2.1we derive a qualitative expression that relates the length of a device to themaximum
fabrication error tolerable. In section 2.2we apply this relation to estimate the effect of fabrication errors for a
variety of different quantumoptics processes of interest realized in titanium in-diffused lithiumniobate (Ti:LN)
waveguides. In section 3.1 the effect of different types of fabrication imperfections is investigated bymeans of
stochastic simulations and in section 3.2we discuss how fabrication imperfections affect quantum state
generation andmanipulation.We focus our attention to the cases of squeezing generation, high-dimensional
frequency bin encoding and efficient bandwidth compression of single photons. Finally, in section 4we discuss
the results of the simulations and describe possible ways to overcome the fabrication limits that degrade the
phasematching spectrum.

2.Qualitativemodel for fabrication tolerances

2.1.Mathematicalmodel
Webegin deriving a simplemodel describing the effect of fabrication imperfections on the efficiency of a
nonlinear process. In particular, we assume that the fabrication imperfection is constant along the sample
length. Consider a general three-wavemixing (TWM) process in awaveguide
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whereωi andβi are the frequencies and themomenta of the fields involved, respectively, and i=1, 2, 3 denotes
the three interacting fields. If themomentummismatchΔβis constant along thewaveguide, an exact solution
for the phasematching spectrumf(Δβ) of the process is given by [25]
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where L is the crystal length. In the case of quasi-phasematching,Δβ has to include the effect of the grating
vectorβQPM=2π/Λ.

The propagation constantsβi= 2πni/λi depend on the refractive index ni seen by the lightfield as it
propagates in the crystal. Fields propagating in awaveguide see an effective refractive index neff dependent on the
local refractive index distribution n(x, y, z) [26]. If n(x, y, z) does not vary along the propagation axis z of the
waveguide, then neff is constant and thewaveguide is said to be homogeneous. This assumption simplifies the
treatment of phasematching inwaveguide structures and in the rest of this sectionwewill consider this scenario.
The analysis of spatially-varying neff(z)will be analysed in detail in section 3.1.

Following the approach presented in [19], we consider a homogeneouswaveguide designed for a specific
TWMprocess. For simplicity, we analyse the influence of a single fabrication parameter having a nominal value
f0. Such a parameter can represent, for example, thewaveguide width, depth, exchange temperature, etc. Due to
fabrication imperfections, the fabrication parameter fprod during the production can be off from the designed
one by δf= fprod – f0. The fabrication error δfwillmodify the neff of thewaveguide, which in turn has an impact
onΔβ. For this reason, a fabrication error δfwill shift the position of the phasematching curvef(Δβ) and
reduce the overall efficiency of the process, as shown in figure 1.

To specify the fabrication tolerances for thewaveguide production, we allow variations inΔβ such that the
efficiency of the target process remains greater than 50%of the ideal value:
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whereΓ≈1.39 is the half-width at halfmaximumof sinc(x)2. ExpandingΔβin a Taylor series
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and noticing that, for the target process,Δβ( f0)=0, we can approximate (2) to thefirst order as
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The parameter∂fΔβ can be referred to as the process sensitivity to parameter f because it relates the length of
awaveguide to themaximum fabrication error allowable. In fact, assuming amaximum fabrication error of
δfmax, from (3)we can determine themaximumwaveguide length Lmax to ensure that the process efficiency is
greater than 50%
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It is therefore clear that any fabrication error poses an unavoidable constraint on thewaveguide length.
However, one can see that if b¶ D∣ ∣f approaches 0, then dfmax tends to infinity. Under this condition, the
waveguide becomes first-order insensitive to the fabrication parameter variations. The condition∂fΔβ= 0 is
known as noncritical phasematching and has been investigated in detail in previous works [19, 20].

Twomain conclusions can be drawn from the analysis presented in this section. Firstly, for a desired process,
there is an inverse proportionality betweenmaximumwaveguide length and fabrication errors. Thismeans that
the technological accuracy poses awell defined limit on themaximum length of thewaveguides. The second
conclusion is that technological imperfections can bemitigated if the process sensitivity isminimized through
careful waveguide design, thereby approaching noncritical phasematching [19, 20]. It is worth stressing that
these conclusions are independent of the specificwaveguide technology orwaveguide geometry and therefore
can be applied to all systems described by (1).While themodel has been derived for a constant fabrication error,
whichwill not usually be the case, its predictions still provide a qualitative description of device performance in
the presence of fabrication imperfections, as wewill show in the following sections.

2.2. Numerical analysis of b¶ D∣ ∣w for Ti:LNwaveguides
Wenow apply the previous theory to titanium in-diffused lithiumniobate (Ti:LN)waveguides in order to study
the technological limits of this platform. Ti:LNwaveguides have beenwidely used for classical and quantum
applications [5, 6, 27–32]. They exhibit extremely low propagation losses (<0.1 dB cm−1), can guide both TE
andTMpolarizationmodes, possess high nonlinearity, allow on-chipmanipulation of the light field via
integrated beamsplitters and acousto- and electroopticalmodulators and can be easily interfaced tofibre
network via pigtailing [14].

As illustrated infigure 2, Ti:LNwaveguides are produced by photolithographic patterning of titanium stripes
with definite widthsw and thicknesses τ on top of a LiNbO3 substrate. Subsequently, titanium is diffused inside
the LN lattice by heating the sample in an oven. The resultingwaveguide is defined by the initial titanium stripe
geometry, the exchange temperature and the exchange time. Finally, periodic poling is performed by electric

Figure 1. Illustration of the effect on the phasematching spectrumof a uniform variation δf of the waveguide fabrication parameter f.
The solid blue line shows the intensity of a desired nonlinear process for a waveguidewith fabrication parameter f0, plotted against the
dimensionless parameter bD L

2
. A variation δf of the fabrication parameter will shift the phasematching curve (dashed–dotted orange

line). For shifts greater than theHWHMof the phasematching spectrum, the efficiency of the target process, represented by the
dashed blue line, drops below 50%. This condition is used to establish a simple criterion to indicate when the fabrication error δf
moves the process outside the chosen tolerance limits.
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field poling after photolithographic patterning of the electrodes on the crystal faces. Fabrication errors can occur
at different steps, e.g. inhomogeneous illumination conditions can affect the patterning of the titanium stripes,
or temperature gradients in the diffusion oven can lead to inhomogeneous diffusion of the titanium. All these
imperfections add up and can cause local deviations of thewaveguide profile with respect to the ideal,
homogeneous case.

Here we use (4) to study qualitatively the fabrication limits of Ti:LNwaveguides. To simplify the treatment,
we choose to consider only one source of error, namely variation of thewidthw of the Ti stripe (fromnowonwe
will refer tow simply as thewaveguide width). In order to estimate∂wΔβ, the effective refractive index of the
guidedmodes as a function of thewavelength, polarization andwaveguide width is needed.We employ afinite
element solver written in Python implementing themodel described in [33] to calculate the Sellmeier equations
of waveguides producedwith different widthsw. The process sensitivity∂wΔβas a function ofw for different
processes is shown infigure 3 for a number of processes of interest for quantumapplications, namely: type-0
PDC [6]; type-II PDC [17]; the quantumpulse gate (QPG) [30]; the resonant PDC source described in [31] and
counter-propagating PDC generating photons at 1510 and 1550 nm.

Recall that thewaveguide isfirst-order immune to noise if the condition∂wΔβ=0 ismet. Among the
processes considered, only the resonant PDCprocess is non-critically phasematched in a regimewhere the
waveguide is single-mode at telecomwavelengths. The type-0 PDCprocess is noncritically phasematched for
w=13 μm, but thewaveguide is spatiallymultimode for this width. This is unfortunate as single-mode
operation is often required.

Another important observation is that each process has a different sensitivity; even the ones involving similar
wavelengths exhibit very different behaviour, e.g. type-0 and type-II PDC. Therefore, the process sensitivity has
to be investigated independently for every process under consideration.

Using the calculated process sensitivities, we can estimate themaximum tolerable width error depending on
the desired sample length using (4). The results for type-0 PDC and theQPGare displayed infigure 4. Themodel
predicts that width errors of -d m∣ ∣w 0.2 m already limit themaximumwaveguide lengths for these two
processes to around 10 mm.The results for the other processes are reported in the appendix. It is important to
compare the predicted error valuewith the ultimate resolution of the illumination technologies. Standard
vacuumcontact lithographic techniques are limited to resolutions around 0.5–0.8 μm [35] and onemight
therefore expect waveguidewidth errors δw in the same range. E-beam lithography can improve the precision by
up to two orders ofmagnitude.However, techniqueswith higher precision often present other disadvantages,
such as higher costs, increased processing time or the difficulty inwriting long structures. Aswewill show in the
following section, the estimation provided by the simplifiedmodel ( -d m∣ ∣w 0.2 m) offers a good indication of
the regionwhere fabrication imperfectionmay start to play a role.

Figure 2. Standard Ti: LiNbO3 waveguide fabrication technique. From top to bottom: (a) deposition of a titanium layer on top of the
lithiumniobate substrate and spin coating of a photoresist layer; (b) photolithographic patterning of the photoresist; (c) etching of the
titanium to define the Ti stripe to be diffused; (d) diffusion of the Ti stripe in the substrate to define thewaveguide.
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3. Phasematching in inhomogeneous guiding structures

3.1. Impact of different noise profiles on the phasematching spectrum
The analysis conducted in the previous sections considered only homogeneouswaveguides. However, in reality
fabrication errors can occur randomly along thewaveguide, thus leading to the production of inhomogeneous
waveguides, where the refractive index distribution varies along z. For this reason, a spatially-varying fabrication
parameter fprod(z) leads to amomentummismatchΔβ(z) that varies along thewaveguide. In this case
equation (1) does not hold anymore and amore general expression has to be considered [36]
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Integration of (5) is possible usually only numerically and by assuming specific profiles for themomentum
mismatch variationΔβ(z) along thewaveguide.Moreover, the phasematching spectrumwill not result in the
usual sinc2 shape [21–23, 37].

In the past, investigation of waveguides with variable dispersion profiles has been restricted to classical SHG
systems assuming simple profiles forΔβ(z) [37]. On the other hand, random fabrication errorsmay
dramatically affect the desired quantum state produced inwaveguide systems. Therefore, in the remaining

Figure 3.Calculated sensitivity b¶ Dw of different processes to variations of the Ti stripe width for Ti:LNwaveguides. The processes
analysed are: type-0 PDC (775 nml1550 nm, le ee), type-II PDC (775 nml1550 nm, lo eo), quantumpulse gate [30, 34]
(1550 nm+860 nml553 nm, oelo), resonant PDC [31] (532 nml890 nm+1320 nm, lo eo) and counter-propagating
PDC (765 nml1510 nm+1550 nm, le ee).

Figure 4.The dependence of themaximumwidth error on the chosenwaveguide length is shown for type-0 PDC (a) and for the
quantumpulse gate (b). This dependence is shown for different waveguide widths. The plots show that themaximumallowable width
error decreases as 1/L and that wider waveguides are less sensitive to thewidth error. Note that the 13 μmline in (a) is not present
because it isfirst-order immune to noise.
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sectionswe study the effect of randomly variable dispersion relations inwaveguides designed for quantum
processes.

Here we study the phasematching properties of inhomogeneous Ti:LNwaveguides as a function of the Ti
stripewidthw and itsmaximum error δw. Generating different profiles forw(z) and calculating the relative
momentummismatchΔβ(z), we can integrate numerically (5) to calculate the relative phasematching spectra.
The details of the simulations of this section are presented in the appendix, section 2.

For simplicity, we investigate fabrication errors δw(z) characterized by two types of noise spectra, namely
additivewhite gaussian (AWG) and 1/fnoise. AWGnoise describes uncorrelated noisefluctuations along the
waveguide, while 1/fnoise is characterised by spatial correlations and accounts for long range drifts in the
production parameters. For example, onemight expects such long range correlations from illumination
inhomogeneities during the photolithography or temperature gradients during the titaniumdiffusion. An
example of how these noise spectra affect thewidth profile and the phasematching spectra is shown infigure 5.

To understand themain differences between the two types of noise, we study the performance of a 20 mm
long, 7 μmwidewaveguide designed for a type-0 second harmonic generation (SHG) pumped at 1550 nm.We
investigate the degradation of the conversion efficiency for values of the fabrication error δwä [0, 1.0] μmfor
both types of noise. The results of the simulations are presented infigure 6. The two types of noise have very
different impact on themaximumachievable conversion efficiency: AWGnoise has a negligible influence, while
1/fnoise can drastically decrease it. Furthermore, the reduction of conversion efficiency is accompanied by an
increase of the phasematching bandwidth, especially for errors δw> 0.25 μm,whose broadened phasematching
spectrum is shown in the insets offigure 6.

The same analysis has been performed for the other processes characterized infigure 3 and the results are
similar: AWGnoise consistently has a negligible impact on the averagemaximum conversion efficiency, while
1/fnoise rapidly degrades the performance of the device as δw increases. These results arewell in agreementwith
previous studies on different systems. The presence of AWGnoise on the poling grating of periodically-poled
waveguides has been previously analysed in [21–23] and showed only aminor influence on themaximum
conversion efficiency.Moreover, a comparison between correlated and uncorrelated noise has been investigated
in photonics crystalfibres, showing that imperfections with long range correlations drastically affect the
parametric gain of nonlinear processes [38]. In the rest of the paper, wewill focus our attention exclusively on
the effects of 1/fnoise, since this is themain cause of phasematching spectrumdistortions.

Having established a framework suitable for the study of waveguide inhomogeneities, we can now compare
the approximate results derived in section 2with numerical simulations. An important result was the ability to
predict design of noncritically phasematchedwaveguides. In particular, we calculated that a type-0 PDCprocess
pumped at 775 nm is noncritically phasematched forw=13 μm.This result is confirmed by evaluating the
conversion efficiency of the reverse process, a type-0 SHGpumped at 1550 nm, as a function of thewaveguide
widthw and the error δw in presence of 1/fnoise. Indeed,figure 7 shows that a 13 μmwidewaveguide is
practically immune to 1/fnoise when close to noncritical phasematching.Moreover, from the calculations
reported infigure 4(a), we expect that a 7 μmwide, 20 mm longwaveguide will be sensitive to noise values

Figure 5.Example of the effect of different noise profiles on the phasematching intensity spectrum. In themain plot, the
phasematching spectrumof the waveguides without noise (black dotted line), with additive white gaussian noise (blue dashdotted
line) andwith 1/fnoise spectrum (orange solid line) are shown. In the inset, the respective waveguidewidth profiles are reported. The
device under consideration is a 20 mm long Ti: LiNbO3 waveguide for type-0 PDC775 nml 1550 nm, characterized via the reverse
process, SHG.
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.dw 0.1μm.As shown infigure 7, for .d mw 0.1 m, themaximumefficiency rapidly degrades below 90%of
the idealmaximum. This confirms that the simplifiedmodel can provide reliable qualitative information about
thewaveguides’ sensitivity to noise and thus the evaluation of the process sensitivity is can provide useful
technological boundaries for the process quality of waveguide production.

3.2. Applications
The theory presented so far is now applied to three different systems of interest in quantumoptics. In fact, we
will show that it is necessary to consider the impact of fabrication errors in these systems to correctlymodel and
estimate their performance. In section 3.2.1we analyse the effect of waveguide inhomogeneities on the
maximum squeezing attainable in awaveguiding system; in section 3.2.2we estimate hownoise reduces the
maximumnumber of bins in a frequency-bin encoding (FBE) scheme; in section 3.2.3we study the effect of
waveguidewidth noise on the bandwidth compression factor of a frequency conversion device.

Figure 6.Maximumefficiency of a nonlinear process as a function of thewaveguidewidth error for the ideal waveguide (black dotted
line), a waveguidewith AWGnoise (blue solid line) and 1/fnoise (orange dashdotted line). Shaded regions correspond to the standard
deviation resulting from the simulation of 40 different systems for each datapoint. The insets show the comparison between the
average phasematching spectrum in the presence of 1/fnoise and the ideal one (in black, dotted line). The shaded area represents the
standard deviation of the simulated intensity spectra. A broadening of the average phasematching spectrum,more prominent side
lobes and reduction of the efficiency are evident. The device under consideration is a 20 mm long Ti: LiNbO3 waveguide for type-0
PDC775 nml1550 nm, characterized via the reverse process, SHG.

Figure 7.Maximumefficiency of a nonlinear process as a function of thewaveguidewidth error, in the presence of 1/fnoise. The three
different curves are calculated for nominal widths of 7 μm (blue dotted line), 13 μm (orange solid line) and 18 μm (green dashed line).
Shaded regions are the standard deviation resulting from the simulation of 40 different systems for each datapoint. Note that the
13 μmwaveguide is noncritically phasematched and so is virtually immune to the presence of noise. The device under consideration
is a 20 mm longTi:LiNbO 3 waveguide for type-0 PDC775 nml 1550 nm, characterized via the reverse process, SHG.
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3.2.1. Impact of fabrication errors in squeezing generation
Wefirst consider awaveguide structure designed to produce continuous-wave (CW) single-mode squeezed
states in a single-pass configuration. These states are the foundation for continuous-variable (CV) quantum
optics: they can be used as a basis for CVquantum computing [39], they have been used to generate complex
quantum states such as EPR entanglement [40] andCV cluster states [41], and they have been used in sensing
andmetrology in order to improve the sensitivity ofmeasurements, e.g. in gravitational-wave astronomy [42].

We consider here a 7 μmwide Ti:LNwaveguide pumped at 775 nm that produces type-0 squeezing at
1550 nm in a single-pass configuration. It can be shown that both the losses of the fundamental field and the
strength of the nonlinear process are critical to the amount of squeezing produced [43].We begin by neglecting
the losses, thereby exclusively investigating the effect of waveguidewidth imperfections on the strength of the
nonlinear process. The strength of the nonlinear process can be found by performing SHG in such a sample,
fromwhich one can calculate the normalized conversion efficiency using

h = ( )P

P L
. 6norm

SH

FF
2 2

A commonmisconception is that, due to its definition, ηnorm is independent of length.However, the qualitative
model presented infigure 4(a) shows that longer waveguides aremore susceptible to fabrication imperfections,
therefore we expect ηnorm to be dependent onwaveguide length.

To calculate ηnorm in presence of fabrication errors, we numerically simulate the phasematching spectra of
the system for different sample lengths Lä[10, 60]mmandwidth errormagnitude δwä[0, 0.5] μm. For each
parameter combination, we calculate themaximum conversion efficiency of 40 randomly generated systems to
estimate the average normalized conversion efficiency. Fromfigure 8, it is evident that the normalized
conversion efficiency is critically dependent on both L and δw. The simulations reveal that both ηnorm and the
waveguide length of each sample are necessary to fairly compare the performance of different devices.
Furthermore it can be seen that the normalized conversion efficiency drops from49 to 40%W cm−2 for 10 mm
longwaveguides and below 15%Wcm−2 for 60 mm longwaveguides. Therefore, it is clear that ηnorm is not a
good parameter to compare the performance of samples with different lengths.

From the calculated normalized conversion efficiencies, one can estimate the amount of squeezing that can
be produced in this device. Following [43], themaximum squeezing S achievable in a single-pass CWwaveguide
can be given by

= + -h a a- - -( ) ( )S e e 1 e , 7P L L L2 norm in

where Pin is the input pumppower of the squeezer andα is the loss for the squeezed field.We assume a negligible
effect of the losses for the 775 nmpump.We consider Pin=500 mWat 775 nmandpropagation lossesα equal
to 0.1 dB cm−1, a safe estimate of the average lossesmeasured in Ti:LNwaveguides [6]. The squeezing S
produced as a function of L and δw is shown infigure 9. It can be seen that, for a given δw, there exists awaveguide
length thatmaximizes the squeezing produced.Moreover, this optimal length increases as themagnitude of the
width error increases. This is due to a complex interplay between the nonlinear interaction strength and the

Figure 8.Normalised conversion efficiency as a function of the error on thewaveguidewidth, for lossless samples of varying lengths. It
can be seen that both the length of the sample and themagnitude of thewidth error have a strong impact on the normalized conversion
efficiency, even in the absence of losses. The device under consideration is a 7 μmwide Ti:LiNbO 3 waveguide for type-0 PDC775 nm
l 1550 nm, characterized via the reverse process, SHG. The shaded areas correspond to the standard deviation of the simulated data.
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losses; as thewaveguide length increases, the positive effect of an increase in the interaction length is
counteracted by an increase in the total losses and a simultaneous reduction of the normalized conversion
efficiency. The simulations show that the systemunder investigation (with 500 mWof pumppower) can
produce around−9.5 dB of squeezing, choosing awaveguide with an optimized length of 40 mm, if the error is
below -dw 0.1μm.

To reduce the impact of fabrication errors, one can consider the use of noncritically phasematched systems.
For the systemunder consideration, this can be done by choosing a 13 μmwidewaveguide, as shown infigures 4
and 7. In this case we expect a normalized conversion efficiency that is independent of thewaveguide length and
the fabrication imperfections. Note that insensitivity to fabrication imperfections is equivalent to having no
fabrication imperfection. Therefore, the squeezing produced in a noncritically phasematchedwaveguide
corresponds to the values at δw=0 μm infigure 9, neglecting aminor deviation in ηnorm due to differences in
the overlap of the interacting fields in thewider waveguide.

3.2.2. Impact of fabrication errors on quantum information encoding
FBE is an attractive scheme for the implementation of quantum information processing protocols because it
offers an unbounded space for high-dimensional encoding compatible with standard fibre networks.
Furthermore, FBE can be implemented using PDC sources, which are a versatile and tunable platform that has
been developed formany years.

Here, we study the limitations of Ti:LNwaveguides as pulsed PDC sources for FBE and evaluate the impact
of fabrication imperfections on such systems.We consider a type-0 PDC source in a Ti:LNwaveguide, pumped
at 775 nm, generating pairs of frequency-bin entangled photons in the telecomC-band, between 1530 and
1570 nm. The physical device is analoguous to the one presented in [44]. Typically, PDC sources for FBE are
pumpedwithCW light [44, 45], however, pulsed systems provide advantages in terms of synchronization
between the communicating parties. Therefore, we consider a pulsed pump laser with a pumpbandwidth
matching the phasematching bandwidth.

FBE benefits fromhaving a large number of encoding bins; however, it is also important tominimize cross-
talk between them.As a compromise between these two factors, we define the frequency-bin bandwidthΔb as
the full width at halfmaximum (FWHM) of the phasematching spectrum and each bin is separated byΔb/2, as
illustrated infigure 10. From this definition, given the available frequency bandΔλ, one can calculate the
number of available bins nbins

l
=

D
D

( )n
b1.5

, 8bins

whereΔλ=40 nm is the bandwidth of the telecomC-band. The number of available bins is then used as a
figure ofmerit for the system. The bin bandwidthΔb is extracted from the phasematching spectrumby fitting it
with aGaussian and taking the FWHMof the fit.

This analysis is applied for varying sample lengths L andwidth errormagnitudes δw and the results of the
calculations are shown infigure 11. Solid lines represent 7 μmwidewaveguides, while dashed ones represent
13 μmwidewaveguides. Shaded areas represent the standard deviation of the data, as calculated from the

Figure 9. Squeezing relative to shot noise exiting the waveguide for samples with different lengths andwidths error. The process is
pumpedwith 500 mWofCW input at 775 nm. Losses for the fundamental field are assumed to be 0.1 dB cm−1. The device under
consideration is a 7 μmwide Ti: LiNbO3 waveguide for type-0 PDC775 nml 1550 nm.

9

New J. Phys. 21 (2019) 033038 MSantandrea et al



simulation of 40 random samples for each datapoint. Note that, in the presence of a spectrumwithmultiple
peaks and sidelobes, it can be difficult to define amain peak for theGaussianfit. This sometimes results in an
underestimation of the phasematching bandwidth, leading to a higher number of bins in comparison to the
noiseless case (for example, this effect can be seen infigure 11 around δw=0.1 μmfor L=60 mm). The
simulations show that it is possible to implementmore than 70 bins in a 60 mm long, provided that fabrication
errors areminimal. However, for the 7 μmwidewaveguides, the number of bins available in longer waveguides
drops rapidly with increasing width error to aminimumof approximately 10. The reason is that longer samples
theoretically havemuch narrower phasematching bandwidth and these aremuchmore susceptible to
fabrication errors, as highlighted in section 2.1. Therefore, in the presence of large fabrication errors, the
maximumnumber of bins becomes, on average, independent of the sample length. In contrast, the 13 μmwide
waveguides do not show a reduction in the number of bins as the noise increases, as can be seen from the dashed

Figure 10. Joint spectral intensity of an ideal, type-0, decorrelated parametric downconversion (PDC) process in Ti:LNwaveguides,
pumpedwith a 775 nm lasers. The pumpbandwidth is chosen tomatch the phasematching bandwidth. For frequency-bin encoding, a
simple criterion to ensure low cross-talk between the different frequency bins is to define the bin size equal to the FWHMof the
phasematching bandwidth, and distance between bins equal to half the FWHMas shown by the overlayed grid.

Figure 11.Maximumnumber of bins available for a frequency-encodedHDQKDprotocol. A 1/f noise spectrumwithmaximum
error δwhas been considered. The bin size is set to be equal to the phasematching FWHMand the distance between the channels is half
the FWHM. Solid lines are for a 7 μmwidewaveguide, dashed line for a 13 μmwidewaveguide. The shaded areas correspond to the
standard deviation of the simulated data. Since the 13 μmwidewaveguide is noncritically phasematched, the standard deviation is
practically zero and barely visible in thefigure.
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lines infigure 11. This is due to the fact that they are noncritically phasematched and therefore immune to
fabrication errors.

3.2.3. Impact of fabrication errors on the performance of a bandwidth compressor
Interfacing components operating at different wavelengths is a critical challenge for quantumoptical networks.
Reduction of transmission losses is paramount inmost applications and therefore transmission in the telecom
C-band is desired, where losses areminimal. However,many quantumdevices operate outside this frequency
band and therefore efficient frequency conversion between these bands is required. Furthermore, it is often
necessary to efficientlymatch the bandwidth of different quantumdevices. Both bandwidthmatching and
frequency conversion can be efficiently achieved in the integratedQPG, a device that implements type-II sum
frequency generation in awaveguide [34].

The integratedQPG in [34]was implemented in a 7 μmwide, 27 mm longTi:LNwaveguide, designed to
convert single photons from the telecomC-band to 550 nm. Themeasured bandwidth compression factor
(BCF)wasΔνin/Δνout= 7.47±0.01, whereΔνin/out is the spectral bandwidth of the input/output photons.
In this device, the compression factor is directly related to the phasematching bandwidth: the narrower the
bandwidth, the higher the compression factor.We have already shown in section 3.2.2 that fabrication
imperfections can increase the phasematching bandwidth of a given process. Therefore, we expect that the
compression factor will reduce in the presence of fabrication imperfections.

We consider a 7 μmwidewaveguidewith different lengths L and varyingmagnitude δw of 1/fnoise on the
waveguidewidth. The input bandwidth is set toΔνin=963±11 GHz as in [34], while the output bandwidth
Δνout is defined as the FWHMof aGaussian fit to the phasematching spectrum, following themethod of [34].

Each datapoint has been simulated 40 times and the results are shown infigure 12(a). The calculated BCFs
are represented in solid lines, while the shaded regions represent the standard variation of the simulated data.
Simulations show that a 40 mm long sample provides a BCF of∼64, in the absence of fabrication imperfections.
This corresponds to an output bandwidth of∼15 GHzor, equivalently, a 30 ps long pulse, under the
approximation ofGaussian phasematching spectrum.

Infigure 12(a) it is also shown, with a dashed line, the BCFmeasured in [34] for their 27 mm longwaveguide.
It is immediately evident that themeasured compression factor is well below the theoretically predicted value. In
fact, calculations show that a 27 mm long sample should provide a compression factor close to 45 in the absence
of imperfections; however, the experimentmeasured a compression factor of only 7.45. Such a reductionwould
only be expected in the presence of width error .d mw 0.4 m, as illustrated in thefigure.

Allgaier et al [34] also characterized the phasematching spectrumof their device and themeasurement
showed deviations from the expected sinc2 profile, as shown infigure 13. These deviations indicates the presence
of non-negligible fabrication imperfections, as it was shown infigure 6 that the presence of 1/fnoise leads to
more prominent side lobes and an asymmetric phasematching profile. Assuming a 1/f-noise profile and
δw=0.4 μm, simulations have been able to reproduce the asymmetry and the prominent side lobes present in
themeasured phasematching spectrum, as can be seen comparing themeasured and simulated spectra in
figures 13(c) and (b), respectively.

Figure 12.Bandwidth compression factor resulting from the up-conversion of 963 GHzbroad telecomphotons, using the quantum
pulse gate [34]. The compression factor has been calculated for different waveguidewidth errors δw and lengths L, in presence of noise
with 1/fnoise spectrum.Moreover, two different nominal width have been investigated, namelyw=7 μmin figure 12(a) and 13 μm
in figure 12(b). The solid lines correspond to the average bandwidth compression factors, while the shaded areas indicate their
standard deviation. The experimental value reported in [34] is also shown as a dashed black line in both plots for comparison.
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The limited compression and the shape of the phasematching spectrum lead us to conclude that the presence
of fabrication imperfections limits the performance of the device presented in [34]. A previously discussed
method to overcome these limitations is to design the process to be noncritically phasematched. Although
figure 3 shows that noncritical phasematching cannot be found for theQPG, it is possible to reduce the process
sensitivity by increasing thewaveguidewidth. Figure 12(b) shows the calculated BCFs for a 13 μmwide
waveguide as the length and themagnitude of the noise are varied. The results show a greatly reduced sensitivity
to noise, as large fabrication errors have a lower impact on the BCF. These systemswould reliably permit BCFs
above 40, resulting in pulses with bandwidths below 25 GHz. Interestingly, these bandwidths correspond to
pulses longer than 20 ps at 550 nm, a regime that is often difficult to reach. These results highlight the fact that
proper systemdesign can have a drastic impact on thefinal performance of such devices.

4.Discussion

So far, we have shown that fabrication imperfections in integrated nonlinear systems limit the useful length and
maximumefficiency of the devices. A natural question is then how to overcome these limitations and optimize
device performance. Three generalmethods can be employed to improve the overall efficiency of the devices:
reducing themagnitude of fabrication imperfections, designing the process to be insensitive to fabrication errors
and reducing the impact of fabrication imperfections by using shorter waveguides.

Whilst itmay be possible to reduce themagnitude of fabrication imperfections for a given production
process, these devices are often realized using state-of-the-art technology and itmay not be possible tomake
further improvements. In any case, the unavoidable presence of technological errors duringwaveguide
productionwill impose an ultimate limit to device performance. It is therefore crucial to devise othermethods to
overcome these limits.

One solution is to design the process to reduce the sensitivity to fabrication errors, as discussed in 2.1. Ideally,
onewould designwaveguides in a noncritically phasematched regime [19]; however, this is not always possible,
as shown infigure 3.Nevertheless, choosing the appropriate designwillminimize the process sensitivity and
reduce the impact of fabrication imperfections, as discussed at the end of section 3.2.3.

Anothermethod to reduce the sensitivity to fabrication errors is to choose shorterwaveguides; an
unavoidable drawback is the reduction of the conversion efficiency. This can be compensated for by employing
multi-pass schemes, e.g. double-pass systems or cavity configurations. This technique, well suited for CW
systems [6], removes the need for longwaveguides at the cost of increased device complexity.

5. Conclusions

In this paper we derived a framework to study the limits posed by fabrication imperfections on the nonlinear
performance of waveguide devices. A qualitativemodel wasfirst developed to describe the effect of fabrication
imperfections on the performance of nonlinear waveguides. Thismodel showed that longwaveguides aremore
susceptible to fabrication errors occurring during the production. A quantitativemodel was then introduced,
which is able to account for inhomogeneities along the length of thewaveguide.We applied thismodel to Ti:LN
waveguides to study the impact of width errors on the resulting phasematching spectrum.Wediscovered that
width errors with long range spatial correlations lead to a reduced conversion efficiency and a distortion of the

Figure 13.Theoretical versus experimental performance of the bandwidth compression device presented in [34]. In figure 13(a) the
ideal phasematching spectrum is shown and can be comparedwith themeasured one shown infigure 13(b). A spectrum similar to the
measured one can be produced assuming a 1/fnoise on thewaveguide width and amaximumwidth error δw=0.4 μm, as shown in
figure 13(c). Panel (b) reproduced from [34]. CCBY 4.0.
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phasematching spectrum. Finally, we studied the impact of imperfections on three prominent quantum
processes. Despite each process having different figures ofmerit, e.g. conversion efficiency or phasematching
bandwidth, the performance of each process was found to be limited by the presence of fabrication
imperfections. Therefore, it is crucial to take fabrication imperfections into account when designing quantum
optics devices.
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AppendixA. Sensitivity to noise of the processes studied infigure 3

Infigure A1we report the relation between themaximumwidth error and thewaveguide length for different
waveguidewidths, for the processes analysed in figure 3 but not shown infigure 4. The three processes show very
different behaviours. Counter-propagating PDC exhibits a very high sensitivity towaveguide width error,
therefore the implementation of this process in LNwaveguide will be particularly challenging. On the other
hand, the resonant PDC source shows a very low sensitivity to fabrication errors, suggesting that samplesmuch
longer than 2 cm could be produced reliably. These simulations show the dramatic differences in process
sensitivities of different devices, again highlighting the need for systemdesign that accounts for the effect of
fabrication errors.

Figure A1.Analysis of the sensitivity for different processes the process analysed infigure 3 but not shown in figure 4. The curve for
w=7 μmismissing from (b) since the system is non-critically phasematched and therefore insensitive to noise.
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Appendix B.Mathematicalmodels of thewaveguide noise

To simulate the effect of errors on thewaveguidewidth, knowledge of the effective refractive index neff of the
waveguide for variable waveguide widths and for different wavelengths is required. Therefore, using a FEM
solver implemented in Pythonwe computed the values of neff for waveguidewidthsw in the range [5.5, 22] μm
in steps of 0.5 μm, in thewavelength range from400 to 1700 nm for both TE andTMpolarizations. These values
are used to calculate

b p
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as a function of thewaveguide width for the different processes analysed.
To simulate a single instance of awaveguide of length L, amesh ofN points spaced byΔz=50 μmisfirst

generated. A randomwaveguide profile with the desired noise spectrum is then generated as follows.
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, where γ=0 for AWG noise and γ=1

for pink noise andfk is a randomvariable uniformly distributed in [0, 2π]. In order to ensure a real-valued
noise profile, we pose the conditionfk=−f−k.

(iii) Take the inverse fast Fourier transform of the spectrum { }Ck and normalise it to have amean value ofw and
maximumdeviation of d∣ ∣w .

Different random instances of the same noise spectrum are generated simply by randomly sampling the phase
fk. Once thewidth profilew(z) is generated, we calculate the spatially-dependentmomentummismatchΔβ(z)
using thewidth-dependent Sellmeier equations previously derived. Finally, equation
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and the phasematching spectrum is evaluated by computingΔβ(zm) at eachmesh point zm, given the local
waveguidewidthw(zm). Note that (B.3) already provides the phasematching spectrumnormalised per unit
length and f∣ ∣2 will always have amaximumvalue of 1 (in the case of ideal phasematching) or lower.
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