
General framework for the analysis of
imperfections in nonlinear systems
MATTEO SANTANDREA,* MICHAEL STEFSZKY, AND CHRISTINE SILBERHORN

Integrated Quantum Optics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
*Corresponding author: matteo.santandrea@upb.de

Received 25 June 2019; revised 4 October 2019; accepted 4 October 2019; posted 7 October 2019 (Doc. ID 370932); published 4 November 2019

In this Letter, we derive a framework to understand the
effect of imperfections on the phase-matching spectrum
of a wide class of nonlinear systems. We show that this
framework is applicable to many physical systems, such
as waveguides or fibers. Furthermore, this treatment reveals
that the product of the system length and magnitude of the
imperfections completely determines the phase-matching
properties of these systems, thus offering a general rule
for system design. Additionally, our framework provides
a simple method to compare the performance of a wide
range of nonlinear systems. © 2019Optical Society of America

https://doi.org/10.1364/OL.44.005398

In both classical and in quantum optics, nonlinear phase-
matching processes are fundamental tools for the generation,
manipulation, and detection of a plethora of different states
of light, e.g., frequency doubling [1], pulse spectra characteri-
zation [2,3], parametric downconversion for photon pair
generation [4], frequency upconversion for enhanced single
photon detection [5], and frequency conversion for interfacing
different quantum memories [6]. These processes are usually
realized in χ�2� or χ�3� nonlinear systems, e.g., lithium niobate
crystals (bulk or waveguides) or photonic crystal fibers (PCFs).

The fabrication of such systems, despite being very mature
in many cases, is still affected by imperfections that spoil the
phase-matching spectrum of the process. This spectrum is the
critical parameter in the case of many quantum systems, as
exemplified by the quantum pulse gate [7]; furthermore, the
quality of the spectrum is directly related to the efficiency [8].
Therefore, in the past decades, several studies have discussed
the relation between fabrication errors in waveguides [8–15]
and in fibers [16–19] and their spectral performance.

These previous investigations typically considered only spe-
cific types of imperfections. This includes our previous work
[8], in which the analysis was restricted to fabrication imper-
fections affecting the widths of lithium niobate waveguides.
Comparing these studies, one can note that the analyzed
systems exhibit a close connection between the device length,
the amount of imperfections, and the overall performance of
the nonlinear process. This observation suggests the existence
of a scaling law, common to all nonlinear systems, determining

the length where the process becomes sensitive to the imper-
fections present in the system.

In this Letter, we introduce a general framework for the
analysis of imperfections in nonlinear systems, which is sys-
tem-independent and, thus, allows a systematic comparison of
different material platforms. We show that this widely encom-
passing framework provides important rules to predict and
design the behavior of many nonlinear systems.

Consider a nonlinear process in a system of length L
characterized by a momentum mismatch:

Δβ �
X
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X
i
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where βi, ni, and λi are the propagation constant, the refractive
index, and the wavelength of the ith field, respectively; and
si � �1 is a sign that depends on the type of process consid-
ered, for example, for copropagating three-wave-mixing
Δβ � β3 − β2 − β1. Note that Eq. (1) is valid for any general
wave-mixing process. The phase-matching spectrum of the
nonlinear process, normalized per unit length, is defined
as [10]
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where z denotes the propagation axis along the system and scal-
ing constants have been neglected, since they do not affect
the shape of the phase-matching spectrum. Note that Eq. (2)
sets the ideal maximum efficiency is 1. Typically, the phase-
matching Φ is expressed as a function of the wavelengths
or the frequencies of the fields involved in the process.
However, this prevents a direct comparison of different sys-
tems, since Δβ depends nonlinearly on these parameters, as
shown in Eq. (1). Therefore, in the rest of the Letter, we will
consider the phase matching as a function of the Δβ.

Under ideal fabrication and operation conditions, the mo-
mentum mismatch Δβ is constant along the sample. However,
fabrication imperfections and/or non-ideal operating condi-
tions affect the phase mismatch of the process, and they can
be described as a position-dependent Δβ�z�. If the variation
of the momentum mismatch is sufficiently small such that it
can be considered frequency-independent [20], we can intro-
duce the decoupling approximation
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Δβ�z� ≈ Δβ0 � σδβ�z�, (3)

where the momentum mismatch has been decomposed into the
sum of Δβ0, describing the momentum mismatch of the pro-
cess in the absence of inhomogeneities, and σδβ�z�, which en-
compasses the variation of Δβ due to inhomogeneities in the
system. The noise amplitude σ is chosen such that jδβ�z�j ≤ 1.

Under these assumptions and with a change of variables
z∕L → z 0 and ξ∕L → ξ 0, the integral in (2) can be rewritten
as

Φ�Δβ0L� �
Z

1

0

expfiΔβ0Lz 0g

× exp
�
iσL

Z
z 0

0

δβ�Lξ 0�dξ 0
�
dz 0, (4)

where the first exponential term leads to the usual sinc depend-
ence of the phase-matching Φ on the mismatch Δβ0, while the
second exponential term describes the effect of the noise σδβ�z�
on the system. Equation (4) can also be understood as the
Fourier transform of the rectangular function representing
the crystal, multiplied by a phase factor introduced by the
imperfections.

In particular, the first exponential shows that the phase-
matching spectrum of all noiseless systems is identical, bar a
scaling factor given by the length of the system. The second
exponential highlights that all systems with the same noise-
length product σL and noise profile δβ�z�, defined for
z ∈ �0, L�, will exhibit the same phase-matching spectrum.
This allows us to study the effect of variations of the momen-
tum mismatch on a system with unit length and then extrapo-
late the results to systems with any length, provided the correct
scaling Δβ0 → Δβ0L and σ → σL is applied.

In the previous section, it was shown that the phase-match-
ing spectrum Φ�Δβ0� is fully characterized by the noise-length
product σL and the noise profile δβ�z�. Therefore, in the
following, we study the impact of these two parameters on
the profile of the phase-matching spectrum.

The scaling law presented in the previous section allows us
to consider a general nonlinear system with L � 1 m and
σ ∈ �0.001, 1000� m−1 without loss of generality. We model
δβ�z� as a stochastic process with a 1∕f spectral density to
describe the long-range correlations that can arise due to fab-
rication imperfections and/or under non-ideal operating con-
ditions of the nonlinear system [8]. For each value of σL,
we randomly generate 100 different δβ�z� profiles and calculate
the relative phase matching as a function of Δβ0 using a piece-
wise approximation [18] of Eq. (4):
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where Δz is the mesh discretization along the z axis, such thatP
nΔzn � L, and Δβn � Δβ0 � δβ�zn�. The simulations pre-

sented in this Letter have been performed with the Python
package PyNumericalPhasematching v1.0b [21].

To quantify the difference between the phase-matching
Φnoisy of a system with imperfections and the phase-matching
Φideal of an ideal one, i.e., where δβ�z� � 0, we introduce the
fidelity F, defined as

F � maxτ
R�∞
−∞ I ideal�Δβ0�Inoisy�Δβ0 − τ�dΔβ0R�∞

−∞ I 2ideal�Δβ0�dΔβ0
, (6)

where I � jΦj2. In Eq. (6), the two curves are normalized such
that

R jΦnoisyj2dΔβ � R jΦidealj2dΔβ, since this quantity is
conserved in the presence of momentum mismatch variation
[22]. Using this definition, the fidelity approaches 1 if the effect
of noise on the phase-matching spectrum is negligible and
tends to 0 if the contribution of the noise is dominant.

We calculate the fidelity F for the simulated phase-
matching spectra, and the results are plotted in Fig. 1. The re-
sults can be well approximated by a Lorentzian-like fitting
curve, shown in Fig. 1 with a solid orange line:

F �σL� � 1

�1� A · �σL�B �C , (7)

with A � 5.4�3� × 10−3, B � 2.12�4�, C � 0.35�2�.
The simulations show that systems with σL ≤ 10 have a

fidelity close to 1 while, for σL > 10, the average fidelity
rapidly drops below 0.5. Therefore, the condition σL ≤ 10 rep-
resents a general design principle for these systems.

We now move away from the abstract description, in terms
of δβ, to study how fabrication imperfections directly relate to
the phase matching and to show how the condition σL ≤ 10
aids in designing a given nonlinear process. For simplicity, we
assume that all the imperfections are introduced by a single
system parameter f . For example, f could represent the local
temperature of the system during operations, the width of a
waveguide, or the holes’ diameter in a PCF. With a suitable
model of the system, one can relate the noise amplitude σ
to the variation of the parameter f with a Taylor expansion
σ ≈ j∂f Δβjδf . Therefore, the condition σL ≤ 10 can be re-
written as

σL ≤ 10 ⇒ δf · L ≤
10

j∂f Δβj
: (8)

In this form, the trade-off between the physical parameters
characterizing the sample, namely, its length L and the error
δf , is explicitly revealed.

Fig. 1. Simulated reduction in fidelity F as the noise-length prod-
uct σL of a nonlinear system increases. The error bars indicate the
standard deviations calculated from 100 randomly generated samples.
The solid orange line corresponds to the best fit of the average fidelity
and follows the relation given by Eq. (7). The insets show examples of
simulated phase-matching spectra (solid blue line), compared to the
ideal phase-matching spectra (dotted black line), for chosen σL values.
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If j∂f Δβj is known, with the help of Eq. (8), one can bound
the maximum length of the system to the maximum error dur-
ing fabrication/operation in order to ensure high fidelity. This
can provide crucial information during the design of samples
and experiments: if the error δf cannot be further reduced,
then the maximum length of the system to achieve high fidelity
is bounded by (8); vice versa, if the length of the sample is
constrained by the experiment, then the error δf has to be
minimized to satisfy (8).

As an example, we consider the restraints set by Eq. (8) on
the four-wave-mixing, seeded parametric downconversion pro-
cess in a PCF described in Ref. [18]. In the Letter, the authors
show that a 3 m long fiber presents a very distorted phase
matching, while a 15 cm long piece of the same fiber is char-
acterized by a much cleaner, but still imperfect spectrum. In
particular, they investigate the effects of the variation of the
pitch Λ of the holes and their diameter d around the ideal de-
sign parameters Λ0 � 1.49 μm and d � 0.6414 μm. Using
the Sellmeier equations provided in Ref. [23], we can estimate
the effect of the variation of these parameters by calculating the
partial derivatives:

j∂ΛΔβjΛ0, d 0
≈ 2 × 10−4 μm−2,

j∂dΔβjΛ0, d 0
≈ 1.5 × 10−2 μm−2: (9)

Since ∂dΔβ is two orders of magnitude higher than ∂ΛΔβ, the
resulting phase matching is much more sensitive to variations of
the holes’ diameter d than to variations in the pitch.

From the observation that the reported phase matching is
already degraded for a PCF longer than 30 cm (which implies
that σL ≥ 10), we can infer that the original 3 m long PCF had
a σL ≥ 100. Using Eq. (7), the expected fidelity for this noise-
length product is below 0.2, thereby explaining the distorted
phase-matching spectrum measured in Ref. [18]. Finally, com-
bining (8) and (9), we can estimate that it is necessary to limit
δΛ (δd ) below 1.1% (0.078%) to achieve high-fidelity phase
matching in a 3 m long fiber, clearly a challenging task.

The decoupling approximation introduced in Eq. (3) relies on
the assumption that the refractive index variation due to im-
perfections can be considered independent of the wavelength
[20]. To show that this approximation is indeed valid in many
cases of interest, we now compare the results presented in Fig. 1
with simulations of five different processes in various systems
affected by different sources of imperfections, all presenting a
1∕f noise spectrum.

Process (a) is a type-0 (zz → z) second-harmonic generation
(SHG) pumped at 1550 nm in Z-cut, X-propagating titanium
indiffused lithium niobate (Ti:LN) channel waveguides. Before
indiffusion, the Ti stripe thickness is 80 nm, and its nominal
width is 7 μm. We consider fabrication errors on the Ti stripe
widths with a maximum excursion of δw. The Ti indiffusion is
performed at 1060°C for 8.5 h. The operation temperature of
the system is considered to be fixed at 190°C. The model used
to calculate the waveguide dispersion is described in Ref. [24].

Process (b) is a type-II (yz → y) SHG pumped at 1550 nm
in Z-cut, X-propagating rubidium exchanged potassium titanyl
phosphate (Rb:KTP) channel waveguides. We assume wave-
guide widths of 3 μm, waveguide depths of 8 μm, and a fab-
rication error on the waveguide width with a maximum
excursion of δw. The dispersion of the waveguide is modelled
according to Ref. [25].

Process (c) is a type-II (yz → y) sum frequency gener-
ation (SFG) 1550 nm� 875 nm → 559 nm in a Z-cut,
X-propagating bulk LN crystal. We assume a position-dependent
temperature profile of the crystal around the nominal tempera-
ture of 190°C. The temperature variation has a maximum excur-
sion of δT . The temperature dependence of the refractive index
has been modelled using the Sellmeier equations reported
in Ref. [26].

Process (d) is a SFG 1545 nm� 805 nm → 1058.5 nm in
a PCF [18]. The nominal pitch of the fiber is Λ � 1.49 μm,
and the holes’ diameter is 641.4 nm with a noise that has a
maximum excursion of δd . We simulate the dispersion of
the system using the model in Ref. [23].

Process (e) is a type-II (xz → x) SHG pumped at 1550 nm
in X-cut lithium niobate-on-insulator (LNOI) waveguides. The
waveguide has a trapezoidal cross section [27]: its height is
450 nm and coincides with the LN thin film thickness,
while its width is 0.9 μm, measured at the top of the profile,
and is characterized by a noise with amplitude δw. The
dispersions have been simulated in Lumerical using the
ordinary and extraordinary refractive indices from Refs. [28]
and [26].

For each system (a-e), we calculate the phase matching and
the fidelity F of 20 randomly generated samples for every
combination of the parameters in Table 1.

To aid in visualization, a randomly chosen subset of the cal-
culated values of F is presented in Fig. 2. It is apparent that the
fidelity of the simulated processes closely follows the model
derived in the previous section, despite having different
noise sources and being realized in vastly disparate physical sys-
tems. This shows that the model presented provides a general
framework to analyze the effects of inhomogeneities on the
phase-matching performance of a wide range of nonlinear
systems.

In this Letter, a general framework for the description and
understanding of the phase matching of nonlinear processes in
the presence of momentum mismatch variations has been de-
veloped. In particular, we have shown that the shape of the
phase-matching spectrum of a wide class of nonlinear systems
is uniquely determined by the noise-length productσL and the
noise profile δβ�z�. This result shows that it is possible to study
the effect of variations of Δβ independent of the specific physi-
cal properties of the nonlinear systems and of the sources of
imperfections.

Using this framework, we investigated the effect that a
noise profile δβ�z� with a 1∕f noise spectrum has on the

Table 1. Fabrication Parameters Used for the Simulation
of (a) Ti:LNWaveguides, (b) Channel Rb:KTPWaveguides,
(c) LN Bulk Crystals, (D) PCFs, and (e) LNOI Waveguidesa

(a) L � 5, 10, 40, 80 mm
δw � 0.05, 0.1, 0.25, 0.5 μm

(b) L � 5, 10, 15, 20, 25, 30 mm
δw � 0.05, 0.1, 0.2, 0.3, 0.5 μm

(c) L � 5, 10, 20, 40 mm
δT � 0.1, 0.2, 0.5, 1.0, 2.0°C

(d) L � 0.5, 1, 2, 3 m
δd � 0.64, 6.41, 64.14, 641.44 pm

(e) L � 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 mm
δw � 1, 2, 5, 10, 20, 50 nm

aDetails about the processes are provided in the main text.
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phase-matching spectrum, for different noise-length products.
We introduced a process fidelity F to measure the ideality of
a phase-matching spectrum and discovered that high fidelities
(F > 0.8) are found for systems with σL < 10. This inequality
provides a general design rule for realizing high-fidelity nonlin-
ear processes.

We applied this design rule to analyze the case of fabrication
errors in the PCF reported in Ref. [18]. The analysis was able to
explain the reported phase-matching spectra and provide
insight towards the requirements necessary to achieve a high-
fidelity phase-matching spectrum.

Finally, we show that many different physical systems follow
the trend predicted by the model. This shows that the pre-
sented framework provides a universal method to understand
and compare the properties of a wide range of nonlinear
processes.
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