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Transport phenomena play a crucial role in modern physics and applied sciences. Examples
include the dissipation of energy across a large system, the distribution of quantum information in
optical networks, and the timely modeling of spreading diseases. In this work, we experimentally
prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to
model general subdiffusive phenomena, exhibiting a sublinear spreading in space over time. Our
experiment simulates such phenomena by means of a finely controlled insertion of various levels of
disorder during the evolution of the walker, enabled by the unique flexibility of our setup. This
allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson
localization to normal diffusion.

Introduction.— Transport phenomena are ubiquitous
in physics, often in connection with the prominent heat
equation. Such phenomena are prime examples for nor-
mal diffusion processes in which the variance, quantify-
ing the spatial spread of the system’s distribution, in-
creases linearly with time. Nevertheless, it is actually
quite common to find natural processes featured by a
dynamics which does not follow such a simple relation.
Rather, these systems are characterized by a distribution
that broadens according to a nonlinear power law [1, 2],
a behavior referred to as anomalous diffusion. In par-
ticular, a sublinear relation between variance and time,
i.e., subdiffusion, can be frequently observed in nature,
such as in biological processes [3–6], wave propagation
and scattering [7, 8], the movement of charge carriers
in amorphous semiconductors [9], disordered media [10],
and many-body localization transitions [11]. Subdiffu-
sion even applies to certain economic models [12].

Because of this vast range of applications and its fun-
damental importance, a manifold of attempts have been
made during recent years to uncover the underlying phys-
ical mechanisms that lead to anomalous diffusion. Such
theoretical models rely on a variety of physically mo-
tivated and more abstract approaches, such as fractal
theory [13, 14], fractional Brownian motion [15], and
continuous-time random walks [16, 17]. Consequently,
the possibility to simulate all kinds of anomalous diffusive
behaviors in one platform—and in a tunable manner—
can not only lead to significant insights into complex
mathematical models but also enables us to study a
plethora of processes in nature. Here, we show that such
a simulation task can, indeed, be realized by means of
disordered quantum walks (QWs).

QWs—the counterpart to classical random walks that
exploit coherent superpositions—serve as a promising
framework to implement simulation protocols since they
provide a general model for the propagation of quantum
particles [18–20]. For example, QWs have been used to

study transport phenomena in biomolecules [21], evo-
lution in solid-state systems [22], formation of molecu-
lar states [23], topological invariants [24, 25], and edge
states [26, 27]. However, basic QWs are characterized
by a spread which grows quadratically in time. This su-
perdiffusive broadening is referred to as a ballistic dif-
fusion. Moreover, by actively influencing the evolution
of the walker, the functional dependency of the broaden-
ing can be altered, e.g., for reproducing the classical nor-
mal diffusion of incoherent processes. For instance, static
disorder leads to Anderson localization, arising from the
interaction between the coherent quantum walker and a
disordered environment [28, 29].

Recently, the continuous transition from ballistic be-
havior to normal diffusion has been experimentally
demonstrated in a QW through the implementation of
time and space inhomogeneous evolution pattern, accord-
ing to a so-called p-diluted model [30]. This approach
fundamentally proves that superdiffusion is achievable by
introducing inhomogeneities in the QW’s evolution. Nev-
ertheless, since that experiment was based on a spatial
scheme that is comparably hard to scale, it was only pos-
sible to investigate the superlinear regime. Therefore, the
less accessible entirety of the subdiffusive domain remains
largely unexplored. Among other reasons, a lack of a fit-
ting experimental platform hindered such a realization
to date since it has to be scalable, dynamically reconfig-
urable, and compatible to the introduction of controlled
disorder in spatial and temporal domain in order to re-
alize advanced disorder models.

In this paper, we experimentally demonstrate that the
conceptual idea of p-diluted disorder can be critically
extended to encompass the subdiffusive regime as well.
In contrast to earlier implementations of the superdiffu-
sive domain, our experiment uses a highly flexible time-
multiplexing scheme to resolve the open problem of sim-
ulating subdiffusion processes. By controlling disorder
in the spatial degree of freedom (here, time bins) and in
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time (here, number of steps), we show that it is possi-
ble to realize any sublinear propagation regime—ranging
from statically disordered QWs, giving birth to Anderson
localization, to completely disordered QWs, correspond-
ing to normal diffusion—that is achieved by implement-
ing different disorder levels.

Theoretical model.— A broadly applicable model for
diffusion and general transport processes can be formu-
lated in terms of the partial differential equation

0 = ∂tP (x, t) + LP (x, t), (1)

in which P (x, t) represents a space-time dependent prob-
ability distribution and L is a potentially time-dependent
differential operator in the spatial degree of freedom x.
For example, L ∝ −∂2x describes the heat equation that
results in normal diffusion. For a large family of ran-
domized media, the asymptotic solution for large times t
reads

P (x, t) ∝ exp

(
−
∣∣∣∣ axσ(t)

∣∣∣∣b
)
, (2)

where b describes the type of the exponential decay and
a is a scaling factor. Furthermore, σ(t) is the standard
deviation with the characteristic power law behavior,

σ(t) = ctd, (3)

where 2d determines the spread of the variance over time
and c is another scaling factor. See, e.g., Ref. [31] for a
thorough derivation of this model. For example, for b = 2
and 2d = 1, we get a Gaussian distribution in space with
a linear increase of the variance. And the parameters
b = 1 and 2d = 0 result in Anderson localization as a
result of the static disorder. Here, we aim at exploring
the theoretically predicted intermediate regime, 1 < b <
2, with a subdiffusive behavior, 0 < d < 1/2.

As established before, discrete QWs have shown their
ability to simulate certain diffusion regimes, such as su-
perdiffusive power laws [30], in the continuous limit of
many steps and positions. The walker on a line is de-
scribed by the coherent superposition state, |ψ(t)〉 =∑
x(ψ0(x, t)|x〉 ⊗ |0〉+ ψ1(x, t)|x〉 ⊗ |1〉), where {|0〉, |1〉}

represents the quantum coin of the walker. For the re-
sulting probability distribution, we trace over this inter-
nal degree of freedom, P (x, t) = |ψ0(x, t)|2 + |ψ1(x, t)|2.
The QW evolves by means of the action of two op-
erators, the coin operator Ĉ(t) and the step opera-
tor Ŝ. The coherent coin toss is given by the uni-
tary map Ĉ(t) =

∑
x |x〉〈x| ⊗ Ĉ(x, t), which can vary

with positions and times. The step operator, Ŝ =∑
x (|x− 1〉〈x| ⊗ |0〉〈0|+ |x+ 1〉〈x| ⊗ |1〉〈1|), then coher-

ently propagates the walker in the two directions, de-
pending on the coin. Thus, the evolution of the full quan-
tum system can be expressed by |ψ(t+1)〉 = ŜĈ(t)|ψ(t)〉.

It turns out to be convenient to model different anoma-
lous diffusion regimes with a corresponding degrees of

static and dynamic disorder in the choice of the space-
time dependent coin. The degree of the dynamic vari-
ation is determined by a parameter p, resulting in the
notion of p-diluted disorder [30]. In general, the coin op-
erator is not homogeneous with respect to position and
step and different constraints can be imposed [32]. For
instance, the coin operator can be inhomogeneuous in
space, but static in time, Ĉ(x, t) = Ĉ(x), leading to An-
derson localization (b = 1) around the starting position
x = 0 [33], which is a static effect (2d = 0). Now, this
static disorder can be perturbed in the p-diluted model
to approximate different differential operators L in Eq.
(1) for different physical scenarios. This perturbation
consists of the independent and random choice of time-
dependent coin configurations according to the percent-
age of dynamic disorder p,

Ĉ(x, t) =

{
Ĉ(x, t) with probability p,

Ĉ(x) with probability 1− p,
(4)

which introduces an inhomogenitiy in time. Specifically,
p = 0 yields Anderson localization (b = 1 and 2d = 0),
and p = 1 results in a completely disordered QW (b = 2
and 2d = 1). Most importantly, the region 0 < p <
1 should theoretically enable us to control our QW in
such a way that it explores the full intermediate range of
exponential spatial decays, 1 < b < 2 in Eq. (2), with
sublinear temporal spreads, 0 < 2d < 1 in Eq. (3). See
the Supplemental Material (SM) for technical details and
the connection to transport processes.

Experimental implementation.— To demonstrate
such subdiffusive phenomena, our QW experiment relies
on the well-established time-multiplexing scheme based
on an unbalanced Mach-Zehnder interferometer with a
feedback loop [29, 34, 35]. Our time-multiplexing scheme
provides high resource efficiency, long-lasting stability,
and homogeneity, which we exploit for the realization
of QWs over a sufficiently large number of steps that is
necessary for clearly distinguishing the signatures of the
subdiffusive behavior. This was not possible through
the previous spatial implementation of p-diluted model
for super-diffusion [30].

In the present scheme, the position degree of freedom
is encoded in the arrival time bin of a weak coherent laser
pulse at the single-photon level that acts as the walker
while the coin information is embedded in the polariza-
tion, |H〉 = |0〉 and |V 〉 = |1〉. An unbalanced interferom-
eter, acting as a delay line by introducing a well-defined
delay between the two polarizations, realizes the step op-
eration. A significant step forward in comparison to the
previous time-multiplexing setups is the introduction of
a fast-switching electro-optic modulator (EOM) in the
feedback loop that enables the dynamical control over
coin operation via polarization rotations, without intro-
ducing high additional losses. This position and step de-
pendent coin operation is harnessed for the implementa-
tion of p-diluted disorder that is central to the realization
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of subdiffusive dynamics. Additionally, we employ two
EOMs in the interferometer arms allowing for determin-
istic routing of the walker either into the feedback loop
or towards the detection unit that measures photon’s ar-
rival time (position) and polarization (coin) degrees of
freedom. For further experimental details, see the SM.

Results.— Our goal is to explore subdiffusive dynam-
ics by carefully studying the behavior of the walker as
a function of the disorder level. In theory, for a suffi-
ciently large number of steps, our measured data for a
discrete QW should approach the continuous model of
subdiffusion. For a given amount of disorder p, several
coin configurations can be obtained because of the ran-
domness in the choice of the coin [Eq. (4)]. We refer to
each configuration as a coin map. Relevant quantities can
be extracted from the walker’s output probability distri-
bution P (x, t) after averaging it over many realizations,
performed with the given disorder value p. We experi-
mentally implemented 400 coin maps for each disorder
scenario under study,

p ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 1.0}, (5)

and the resulting average probability distribution has
been measured for step numbers

t ∈ {5, 8, 11, 14, 17, 20}. (6)

For each of the 2 400 coin maps, we create a statically
disordered coin configuration which are then perturbed
according to the given level p of disorder. By randomly
choosing the starting static disorder, it is assured that the
final results do not depend on a particular static config-
uration but only on the disorder level p.

Our measured data enables us to analyze both the spa-
tial characterization in terms of P with a given exponen-
tial behavior, 1 < b < 2, and the temporal spread to
certify anomalous diffusion, 0 < 2d < 1. Let us begin
with the former and then proceed with the latter.

For a fixed step number t, and for p = 0, an expo-
nentially localized distribution is expected, Anderson lo-
calization. With increasing disorder level p, we expect a
broadening of the distribution. Eventually, for p = 1, a
Gaussian shape should be obtained, typical for the dif-
fusive behavior. In order to find the parameters that fit
the measured distribution best, it is convenient to work
with a modified expression of Eq. (2),

ln(P ) =

(
−
∣∣∣ a
σ

∣∣∣b) |x|b − ln

(∑
x

e−|ax/σ|
b

)
, (7)

that can be fitted to our experimental data to character-
ize the probability distribution.

Experimental data corresponding to t = 20 for dif-
ferent amounts of disorder are reported in Fig. 1. In
the top plot, dots correspond to experimentally obtained
probability distributions. Dotted lines represent values of

FIG. 1. Top. Probability distribution P for various values
of the disorder p, Eq. (5). Experimental data (dots) agree
within the uncertainties with the theoretical results (dotted
lines). Error bars take into account Poissonian statistics and
experimental imperfections of the setup. Bottom. Logarithm
of the experimental probability distribution (dots) together
with fit (dashed lines) according to Eq. (7). For the sake of
clarity, only selected p values are depicted.

the theoretical probability distribution, obtained from a
numerical simulation. Similarities between experimental
and theoretical probability distributions for each step and
p values are above 99%, indicating a very good agreement
even without considering many unavoidable experimen-
tal imperfections in our simulation. The bottom panel
of Fig. 1 is even more conclusive when it comes to de-
termining the characteristic exponent b. The plot shows
experimental data (dots) together with the fitted curves
(dashed lines) according to Eq. (7), covering the range
from a linear (b ≈ 1) to a parabolic (b ≈ 2) decay in this
logarithmic depiction. It is clear from the graph that the
presence of higher disorder p diminishes the probability
to find the walker in the starting position x = 0 for t > 0.
Consequently, the probability to find it in more distant
positions increases, resulting in a broadened distribution.
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TABLE I. Values of the characteristic exponents for the spa-
tial (values for b) and temporal (values for 2d) behavior of
p-diluted subdiffusive QWs. By collecting data from realizing
400 coin maps, we fit the theoretical predictions in Eqs. (7)
and (8) to the measured data in Figs. 1 (bottom) and 2.

p b 2d

0.0 0.953± 0.044 0.346± 0.040

0.1 1.199± 0.048 0.551± 0.030

0.2 1.489± 0.046 0.723± 0.032

0.3 1.639± 0.066 0.812± 0.028

0.5 2.071± 0.077 0.947± 0.027

1.0 2.422± 0.083 1.070± 0.032

The subdiffusivity of the evolution of the walker is con-
firmed through 1 . b . 2 (the specific numerical values
in Table I). It is worth noting that other imperfections
lead to a broader range than one actually expects from
an ideal model, cf. value b > 2 in Table I.

The second feature we focus on consists of the depen-
dency of the variance as a function of the step number t,
again for different values of disorder. To assess the sub-
diffusive spread with our data, it is similarly convenient
to recast Eq. (3) into a logarithmic form,

ln(σ2) = 2d ln(t) + ln(c2). (8)

Results are reported in Fig. 2 on a logarithmic scale
for both axes. Dashed lines correspond to the curve in
Eq. (8) which is fitted to the experimental data (dots)
for different values of the disorder p. The nearly per-

FIG. 2. Logarithm of the variance as a function of the
logarithm of the step number t [Eq. (6)] for disorder values
p in Eq. (5). Dots correspond to experimental data; dashed
lines show fits according to Eq. (8). The linear behavior with
slopes between zero and one in this doubly logarithmic graph
for each value of p demonstrates an excellent agreement with
the predicted subdiffusive nature of the evolution.

fect linear behavior with slopes 0 . 2d . 1 (see Table
I for numerical values) confirms the actual subdiffusive
spread of the QW evolution. A discrepancy between the
data and the fit can be observed for p = 0.0 because of
the extreme sensitivity of Anderson localization with re-
spect to unavoidable experimental imperfections. Here,
one would also expect a constant variance, which, how-
ever, is only approached in the limit t → ∞, even in
theory. As in the previous spatial analysis, error bars on
the experimental data have been computed considering
a Poissonian statistic of counting as well as experimental
imperfections of the setup.

Beyond earlier studies, we analyzed both the spatial
and temporal impact of the amount of disorder p. Ac-
cording to our results, we can confirm that our approach
enables us to simulate almost any subdiffusive behavior.
Thus, the sublinear spread of the walker over time and
the characteristic shapes of the measured spatial distri-
butions indicate that the interplay between a static dis-
order and completely random disorder, freely controlled
and interpolated via p, is a viable way to reproduce com-
plex subdiffusion phenomena through discrete QWs.

Conclusion.— In pursuing the ultimate goal of im-
plementing a universal quantum simulator, we demon-
strated the ability to experimentally simulate subdiffu-
sive transport phenomena, having a wide range of ap-
plications, via disordered QWs. By analyzing our data
regarding their spatial and temporal features, we have
been able to map the landscape of characteristic proper-
ties of subdiffusion. Firstly, we controlled our system in
a way that leads to position distributions of the walker
ranging from Anderson localization to a normal Gaussian
distribution. Secondly, anomalous diffusion in the sub-
linear regime was explored to characterize the spread of
the walker over time. This complements earlier findings
that have been restricted to superdiffusion by starting
from an already completely ordered evolution.

Because of our unique control over the coin at each
position (time bin) and for each step of the QW, the de-
manding goal of realizing subdiffusion was successfully
accomplished with our setup. By perturbing our ini-
tial implementation of static disorder, we realized a p-
diluted QW by adding dynamic noise in a controlled man-
ner to steer our system towards the subdiffusive regime.
Specifically, this method introduces additional fluctua-
tions, with probabilities p and 1− p for the dynamic and
the static disorder contributions, respectively. The agree-
ment between the measured data and the theoretical
predictions for both the quantities under study, namely
shape of the position distribution and the change of the
variance in time, clearly demonstrates that the coherent
walker evolves subdiffusively.

Exceeding our proof-of-concept realization reported
here, our results provide a promising starting point for
future studies as well. For instance, our setup actu-
ally enables us to measure coin-space-resolved distribu-
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tions (see SM) that can be relevant for assessing quan-
tum properties between the coin and time-bin degrees
of freedom, such as entanglement. Furthermore, the ex-
periment could be extended to two single-photon walkers
[30] by means of the very same experimental setup [36].
This could further foster other simulations of sophisti-
cated correlated diffusion phenomena. For instance, it is
known that Anderson localization holds true in the case
of entangled photons [28]. However, the general impact of
correlated (p1, p2)-diluted dynamical noise for the walk-
ers 1 and 2 is entirely unknown but could potentially be
studied in our system.
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SUPPLEMENTAL MATERIAL

Detailed description experimental setup

Here we present details of our time-multiplexing QW
setup based on a fiber loop as shown in Fig. 3. See also
Refs. [29, 34, 35]. This scheme is beneficial in terms
of resource efficiency, high stability, and high homogene-
ity, which we exploit to realize coherent evolution over
sufficiently large number of steps.

A coherent laser pulse, attenuated to a single-photon
per pulse on average, serves as the quantum walker. The
walker pulse is derived from a laser with central wave-
length of 1550 nm, pulse width of 1 ps, and repetition
rate of ∼ 4 kHz. The walk starts when the pulse im-
pinges from the top port of PBS1 for the first time. The
walk is then initialized at position x = 0 with horizon-
tally polarized light, |ψ(0)〉 = |0〉 ⊗ |0〉. The unbalanced
Mach-Zehnder interferometer implements the step oper-
ation Ŝ, which includes polarization dependent splitting
at PBS1, propagation of horizontal and vertical polar-
ization through long (∼ 473 m) and short (∼ 453 m)
fibers, respectively, and finally coherent recombination
of the two paths at PBS2 to introduce a well-defined de-
lay between the two polarizations. The interferometer is
closed with a free-space feedback loop, which redirects
the light back to PBS1 for the next step. In totality,
this leads to the encoding of walker’s position degree of
freedom in the pulse arrival time. The capability of dy-
namical polarization rotation by the two fast-switching
EOMs, EOMH and EOMV, enables us routing the pulses
either back to the feedback loop or to the detection unit.

FIG. 3. Schematics of the experimental layout, using the
following elements: polarization controller (PC), polarizing
beam splitter (PBS), and electro-optical modulator (EOM).
The PC allows to precisely compensate the polarization ro-
tation caused by the propagation through the fibers. Note
that the detection is, in fact, polarization resolving. This is
achieved by splitting the output of the loop with PBSdet fol-
lowed by one detector for each polarization.

This high-quality active polarization control facilitates
deterministic in- and out-coupling, rendering it possible
to implement sufficiently large number of steps by en-
hancing the roundtrip efficiency. The current setup is
designed to have a step separation of ∼ 2.3 µs and po-
sition separation of ∼ 105 ns and has been utilized to
demonstrate walks up to 36 steps by allowing time-bin
interlacing for successive steps [35]. However, we here
restrict ourselves here to 20 steps, which is sufficient to
unambiguously discern subdiffusive dynamics, while min-
imizing the error from interlacing. The detection unit al-
lows for polarization-resolved photon counting at individ-
ual time bins, using PBSdet and high-efficiency (> 90%)
superconducting nanowire single-photon detectors with a
dead time of ∼ 100 ns, from which we deduce the evolu-
tion of walker’s probability distributions.

Our investigation of subdiffusive behavior mainly relies
on the implementation of position and step dependent
coin operation, Ĉ(x, t). This dynamical coin operation
is achieved by extending the capability of the previous
setup via the introduction of another fast-swithing EOM
(EOMcoin) followed by a quarter-wave plate (QWP)
in the feedback path. The action of a QWP aligned
at an angle 45◦ with respect to the polarization basis
{|H〉, |V 〉} reads as

ĈQWP =
1√
2

(
1 −i
−i 1

)
. (A.9)

The EOM operation can be written as

ĈEOM =

(
cosφ −i sinφ

−i sinφ cosφ

)
, (A.10)

where the phase φ can be tuned by varying the volt-
age applied to the EOM. Their combination leads to the
transformation

ĈEOM ĈQWP =

(
cos θ −i sin θ

−i sin θ cos θ

)
, (A.11)

using

θ = φ+
π

4
(A.12)

and the identities (cosφ− sinφ)/
√

2 = cos θ and (cosφ+
sinφ)/

√
2 = sin θ.

It is worth emphasizing that the present scheme uti-
lizes free-space EOMs, which introduce very low losses
(< 1%). The combination of active in- and out-coupling
and free-space EOMs leads to a significantly improved
roundtrip efficiency (> 80%) in comparison to the pre-
vious disordered time-multiplexing QW setup that used
integrated EOM [29]. However, relatively high-voltage
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requirements for free-space EOMs comes with the hard-
ware limitations that allow only three different voltage
settings, v ∈ {−v1, 0,+v1}, during a single experimental
run. In particular, v = 0 corresponds to φ = 0, leading
to a coin operation that equally mixes |H〉 and |V 〉. We
chose v = ±v1 such that φ = ∓π/4. This yields an iden-
tity coin that leaves the polarization states unchanged
and a reflection coin that switches the polarizations. No-
tably, we find that these three accessible coin operations
are sufficient for the exploration of the complete subdiffu-
sive QW regime, thanks to the p-diluted disorder scheme.
We design appropriate voltage-switching patterns for the
EOMs that put into effect various disorder strengths p
ranging from p = 0 (Anderson localization) to p = 1
(normal diffusion).

Supplemental details on the theory

For a self-consistent reading of this work and for a
coherent treatment, we recapitulate and reformulate the
theory on diffusion in randomized media as reported in
Ref. [31]. There, the approach was based on the Laplace
transform in the temporal domain. For our purposes,
it is, however, more convenient to discuss that method
in terms of the Fourier transform in the spatial domain.
Eventually, we relate this approach to p-diluted models.

A general model of diffusion in a one-dimensional sys-
tem can be described by the equation

0 = ∂tP (x, t) + L(−∂2x, t)P (x, t), (A.13)

where L is a potentially time-dependent differential op-
erator. In the continuous limit, this equation also models
the asymptotic behavior of a discrete system, such as our
QW. Furthermore, the differential operator depends on
−∂2x for a positive (i.e., dispersive) behavior because of
−∂2xeixk = k2eixk and k2 ≥ 0.

Using the characteristic function, i.e., the Fourier
transform Φ(k, t) =

∫ +∞
−∞ dx e−ikxP (x, t), we can rewrite

Eq. (A.13) as

0 = ∂tΦ(k, t) + L(k2, t)Φ(k, t). (A.14)

Then, the solution in form of the Green’s function can
be formally expressed as

G̃(k, t) = exp

(
−
∫ t

0

dt′ L(k2, t′)

)
, (A.15)

This solves Eq. (A.14) as Φ(k, t) = G̃(k, t)Φ(k, 0), where
Φ(k, 0) represents the inital distribution. In our case, this
is modeled by a singular input at the center position, thus
Φ(k, 0) = 1 in the Fourier domain.

It was also shown in Ref. [31] that, for large times
(t� 1), solutions follow the functional form

P (x, t) =
ab

2σ(t)Γ(1/b)
exp

(
−
∣∣∣∣ axσ(t)

∣∣∣∣b
)
, (A.16)

with Γ being the Gamma function and σ(t) denoting a
time-dependent standard deviation. In addition, we de-
fine a =

√
Γ(3/b)/Γ(1/b) and b relates to the type of

exponential decay; e.g., b = 1 and b = 2 define a linear
and quadratic behavior, respectively.

The moments of this distribution can be evaluated as
well; odd moments vanish and even moments read

E(x2n) =
Γ
(
2n+1
b

)
Γ
(
1
b

) [
σ(t)

a

]2n
. (A.17)

These moments enable us to expand the characteristic
function in a Taylor series as

Φ(k, t) =

∞∑
n=0

E(xn)
[ik]n

n!

=1 + σ(t)2
−k2

2
+

Γ
(
5
b

)
Γ
(
1
b

)
Γ
(
3
b

)2 σ(t)4
k4

24
+ · · · .

(A.18)

Similarly, we can expand the generator of the evolu-

tion, L(k2, t) =
∑∞
n=0 λ2n(t) k2n

(2n)! . This further allows us

to expand the Green’s function from Eq. (A.15),

G̃(k, t)

=G̃(0, t) +

[
−
∫ t

0

dt′ λ2(t′)

]
G̃(0, t)

k2

2

+

[
−
∫ t

0

dt′ λ4(t′) + 3

[∫ t

0

dt′ λ2(t′)

]2]
G̃(0, t)

k4

24

+ · · · ,
(A.19)

where G̃(0, t) = exp
(∫ t

0
dt′ λ0(t′)

)
. Because of our initial

conditions, resulting in Φ(k, t) = G̃(k, t), we can now

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

b

φ

FIG. 4. Function ϕ = f(b) = Γ
(
5
b

)
Γ
(
1
b

)
/Γ

(
3
b

)2 − 3 is
shown in the relevant interval 1 ≤ b ≤ 2. In this region, f
is strictly monotonously decreasing, allowing for defining its
inverse for determining b from ϕ.
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equate the coefficients for G̃ in Eq. (A.19) and Φ in Eq.
(A.18). Since this identification has to be satisfied for all
times t > 0, we find

λ0(t) = 0,

∫ t

0

dt′ λ2(t′) = σ(t)2, and

−
∫ t

0

dt′ λ4(t′) =

[
Γ
(
5
b

)
Γ
(
1
b

)
Γ
(
3
b

)2 − 3

]
︸ ︷︷ ︸

def.
= ϕ=f(b)

σ(t)4. (A.20)

Importantly, b = f−1(ϕ) determines the exponent in Eq.
(A.16). See Fig. 4 for the graph of f .

A first consequence of the aforementioned relations is
that the spread σ(t) is given by the time dependency of
the first nonzero Taylor coefficient λ2(t), resulting the the
corresponding power law, such as σ(t) = ctd with con-
stants c, d > 0 [31]. Thus, the introduction dynamic dis-
order, changing the time-dependence generator L, gen-
erally results in an increment of the power. As a second
observation, we have a look at the relation that includes
λ4(t). This coefficient is typically negative which allows
one to substitute it by −λ4(t) = ρ(t)λ2(t)2. With this,
we can rewrite the above relation as

ϕ =

∫ t
0
dt′ ρ(t′)λ2(t′)2 −

(∫ t
0
dt′ ρ(t′)λ2(t′)

)2
(∫ t

0
dt′ λ2(t′)

)2
+

(∫ t
0
dt′ ρ(t′)λ2(t′)∫ t
0
dt′ λ2(t′)

)2

.

(A.21)

Herein, the numerator of the first term plays a role a vari-
ance, quantifying the fluctuation in λ2(t), that influences
b = f−1(ϕ).

With these considerations, we can conclude that our
p-diluted model dynamically changes the generator L by
altering the coin operations. As discussed above, this
broadens the spread in time (increasing d via λ2). Sec-
ondly, it changes the spatial exponential decay. That is,
if only a few coins are changed per time step (low p),
those are unlikely the same coins, leading to a high fluc-
tuation in λ4, thus high ϕ, thus low b (Fig. 4). The other
way around, a high p results in low ϕ and a high b.

Additional results from data analysis and
comparison with numerical model

Experimental probability distributions as a function of
x and t are reported in Fig. 5 for all selected p values,
showing positions −11 < x < 11 for all selected time
steps t. For an enhanced data visualization, each row is
normalized to the maximum of the corresponding prob-
ability distribution. It is clear that the spread of the
distribution increases with p, starting from a condition

FIG. 5. Experimentally measured normalized intensity dis-
tributions P (x, t). Each panel corresponds to one parame-
ter p, increasing from top to bottom. Data are reported for
x ∈ [−11, 11] (horizontal axis) and for several selected times
t ∈ [5, 20] (vertical axis).

in which the walker remains localized for all the steps
of the evolution (p = 0) up to the behavior typical of a
completely disordered QW (p = 1). In addition to the
logarithmic plot of the time-dependent variance in the
main text, a linearly scaled version is provided in Fig. 6.

In order to compare our experimental results with the
expected ones, we implemented a numerical simulation
that produces 10 000 different coin maps for a given level
of disorder. Let us recall that a coin map is a set of coin
configurations which are obtained by starting from static
disorder Ĉ(x) and randomly changing a percentage p of
coins to Ĉ(x, t). The distribution that is obtained by
averaging over all numerically implemented coin maps
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TABLE II. Characteristic parameters for the implemented disorder levels p. The values have been estimated by means of a
least square fit to theoretical predictions. Quantities with the subscript “num” have been extracted from our numerical model,
considering 10 000 coin maps. The subscript “exp” indicates quantities obtained from our data, realizing 400 coin maps. The
parameters b and δ relate to the theoretical prediction ln(P ) = −δ|x|b + const. (where δ = |a/σ|b when compared to main text)
for the 20th step. Values for 2d and c2 are a result of the fit to the theoretical prediction ln(σ2) = 2d ln(t) + ln(c2).

p bnum bexp δnum δexp 2dnum 2dexp c2num c2exp

0.0 0.800 0.953± 0.044 1.027 0.719± 0.084 0.097 0.346± 0.040 3.56 2.08 ±0.19

0.1 1.126 1.199± 0.048 0.367 0.300± 0.034 0.504 0.551± 0.030 1.88 1.87 ±0.14

0.2 1.378 1.489± 0.046 0.171 0.130± 0.015 0.686 0.723± 0.032 1.44 1.41 ±0.11

0.3 1.568 1.639± 0.066 0.095 0.081± 0.013 0.776 0.812± 0.028 1.376 1.293±0.087

0.5 1.863 2.071± 0.077 0.038 0.022± 0.004 0.894 0.947± 0.027 1.232 1.183±0.073

1.0 2.138 2.422± 0.083 0.016 0.008± 0.002 1.043 1.070± 0.032 0.967 0.937±0.070

FIG. 6. Experimental data (dots) and the fitted relation
σ2 = c2t2d (dashed lines) on a linear scale for both axes.

then models our experiment. However, these theoreti-
cal values have been computed in the completely ideal
case, i.e., without considering unavoidable setup imper-
fections. Still, this simple model was already sufficient to
match the results of the experiment sufficiently well.

In addition to the space-time dependent depiction of
our data in Fig. 5, the comparison to theory of both
our data and numerical model are given in Table II for
various cases of p-diluted disorder. These values follow
the expected trend: the higher the disorder, the higher
the exponential decay in space and temporal dispersion,
quantified by b and d, respectively. Specifically, the re-
ported values confirm that we mostly operate in the sub-

diffusive regime of the QW, 1 ≤ b ≤ 2 and 0 ≤ 2d ≤ 1.
As one might expects, small discrepancies can be ob-

served between experimental and numerical values as
well as the theoretical predictions. For instance, devi-
ations from numerical and experimental parameters can
be caused by imperfect randomization since these param-
eters have been extracted by averaging the probability
distributions over 10 000 coin maps in the ideal simula-
tion while only 400 have been implemented experimen-
tally. Nevertheless, estimates for parameters from nu-
merics and data mostly agree with each other within the
confidence interval, and deviations can be generally ex-
plained by considering experimental imperfections, such
as a nonideal operation of the EOMs as well as the QWP,
less than 100% visibility of interference, and slight setup
misalignment, all of which contribute to increasing the
spread of the walker.

The highest discrepancies to the theory can be ob-
served for the extremal cases of disorder, p = 0 and p = 1,
affecting both numerics and experiment. Firstly, the dis-
crepancy for p → 0 can be understood by considering
that Anderson localization typically arises from a strict
periodicity in the disorder pattern. For this reason, it
is much more sensitive to small imperfections compared
to other disorder values, resulting in an higher deviation
from the theory. Moreover, a nonspreading regime is only
feasible for t → ∞. Secondly, the discrepancy for p → 1
is amplified by some of the effects previously mentioned
even further. For instance, p-diluted models describe a
convolution of the initial (Anderson-like) behavior with
another distribution for dynamic disorder, causing that
imperfections of all initial realizations add up. Besides,
imperfections propagate along with the spreading of the
walker over time.
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