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Abstract: Two-photon time-frequency entanglement is a valuable resource in quantum infor-
mation. Resolving the wavepacket of ultrashort pulsed single-photons, however, is a challenge.
Here, we demonstrate remote spectral shaping of single photon states and probe the coherence
properties of two-photon quantum correlations in the time-frequency domain, using engineered
parametric down-conversion (PDC) and a quantum pulse gate (QPG) in nonlinear waveguides.
Through tailoring the joint spectral amplitude function of our PDC source we control the temporal
mode structure between the generated photon pairs and show remote state-projections over a
range of time-frequency mode superpositions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum correlations provided by parametric down-conversion (PDC) photon pair sources are a
powerful tool for quantum information science. The polarization, spatial, and time-frequency
degrees of freedom can be employed to generate strong and verifiable two-photon entanglement
[1–4]. These correlations enable techniques such as quantum state teleportation [5,6], device-
independent quantum key distribution [7], and remote state preparation [8–12]. In order to exploit
these resources for such tasks, it is necessary to have control over the generation of quantum
correlations and also develop coherent measurement techniques in the desired degree of freedom.

While photonics provides the undisputed platform for implementations of multi-party quantum
communication protocols and long-distance quantum experiments [13–15], each photonic degree
of freedom carries associated advantages and challenges. The time-frequency degree of freedom,
in particular, provides a high-dimensional quantum alphabet and is perfectly suited to fiber-based
communication networks and integrated waveguide devices [3,14,16]. Entanglement in this
degree of freedom is also naturally present in PDC sources, and can be controlled using pulse
shaping techniques and material dispersion engineering [17]. However, the underlying time-
frequency modes of the PDC state, also known as temporal Schmidt modes [18], are not directly
resolvable with traditional time or frequency measurements. Recently developed methods to
control and manipulate the temporal mode structure of entangled states provide a powerful
resource for entanglement-enabled photonic technologies [19–24]. However application of these
methods to quantum states remains largely unexplored.
In this work, we use tailored bipartite time-frequency quantum correlations to remotely

prepare photonic temporal-mode states. Using a flexible toolbox of dispersion-engineered
nonlinear optics and ultrafast pulse shaping, we perform projective measurements onto custom
temporal-modes for one half of an entangled photon pair and measure the conditional spectrum
of its partner, as sketched in Fig. 1. We experimentally explore the correlated temporal-mode
structure of PDC states with both traditional time-frequency correlations and engineered pulsed
temporal-mode Bell-like correlations. In doing so, we also demonstrate that time-frequency
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remote state preparation can be used to efficiently prepare complex single-photon wave packets
by harnessing the joint time-frequency coherence of the two-photon state.

Fig. 1. Experimental concept. We generate time-frequency entangled photon pairs via
parametric down-conversion (PDC), where the shape of the PDC pump pulse and the
dispersion of the down-conversion medium allow us to engineer the exact form of the
generated quantum correlations. We project upon chosen ultrashort pulsed time-frequency
modes using a quantum pulse gate (QPG), which registers a successful projection by
converting the signal to a visible (green) pulse. We then measure the spectrum of the partner
photon conditioned upon detecting a green pulse on a single-photon detector (SPD).

2. Engineering time-frequency entanglement

We consider type-II PDC processes confined in waveguides with a single spatial mode, where we
are interested in a subspace of the PDC state that has exactly one generated photon pair at any given
time (and not multiple pairs of photons, nor the vacuum); these conditions can be experimentally
matched by operating at low optical gains and performing coincidence measurements [25,26].
Then we can write the generated entangled state as

|ψ〉PDC =

∫
dωs dωi f (ωs,ωi)â†(ωs)b̂†(ωi)|0, 0〉, (1)

where â†(ωs) and b̂†(ωi) define the signal (s) and idler (i) polarization modes and f (ωs,ωi) is the
complex-valued joint spectral amplitude (JSA), normalized to

∫
dωs dωi |f (ωs,ωi)|

2 = 1. If the
JSA is not factorizable, i.e. f (ωs,ωi) , fs(ωs)fi(ωi), the signal and idler share time-frequency
entanglement. We can depict this entanglement more explicitly by considering the Schmidt
decomposition of the state, equivalent to the singular value decomposition of the JSA. To do so,
we decompose the JSA into a sum of orthonormal functions {gk(ωs)} and {hk(ωi)} [17,18],

f (ωs,ωi) =
∑

k

√
λkgk(ωs)hk(ωi). (2)

Equation (2) describes correlations such that if the signal photon is measured in the pulsed
temporal-mode defined by the broadband field amplitude gk(ωs), the idler will collapse to the
corresponding field amplitude hk(ωi). The shape and decomposition of the JSA depends on
the spectral shape of the PDC pump pulse, α(ωs + ωi), and the phasematching function of the
down-conversion medium, Φ(ωs,ωi), as

f (ωs,ωi) = α(ωs + ωi)Φ(ωs,ωi). (3)

For traditional PDC states, the JSA exhibits frequency anti-correlations which are dominated by
the energy conservation of the pump contribution. As shown in Fig. 2(A), such a state is composed
of many pulsed temporal-modes [18]. If the JSA can be approximated by a two-dimensional
Gauss function, the Schmidt decomposition gives correlated pairs of Hermite-Gauss temporal
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modes. Please note that although the multi-mode states we consider here are limited to few
modes, the concepts and methods can be extended to highly multi-mode states.

More interestingly, if the group velocities (v) of the pump, signal, and idler are balanced such
that 1

vp
− 1

vs
= 1

vi
− 1

vp
, it is possible to generate photon pairs in precisely one temporal-mode [26,27].

This configuration, known as symmetric group velocity matching or extended phasematching,
also allows for the generation of photon pairs with controlled entanglement dimensionality by
only shaping the pump pulse [16,17,28]. In particular, by shaping the pump pulse into the
first order Hermite-Gauss shape with the same bandwidth as the phasematching function, the
two-photon state emitted by the PDC source will be maximally-entangled with pulsed temporal
Hermite-Gauss modes, analogous to the |Ψ+〉 Bell state [16],

(4)

In our experiment, the symmetric group-velocity matching is not perfectly matched which results
in slightly different probabilities for the two terms, as seen in Fig. 2(B). We also note that similar
entangled states can be generated with shaping the crystal’s non-linearity instead of the pump
pulse [29].

3. Time-frequency mode measurements

From the Schmidt decomposition of Eq. (2) we can learn that if we condition an idler detection on
a projection of the signal photon into the pulsed temporal-mode defined by gk(ωs), the idler will be
found in the mode defined by hk(ωi). Considering the two-dimensional maximally entangled state
of Eq. (4), if we project the idler photon into any arbitrary superposition ,
we will find the signal photon in the superposition state . This is known
as remote state preparation [8,9], and can be extended to more complex remote shaping of
time-frequency waveforms given a higher-dimensional entangled resource [12,30,31]. Another
interesting example is a highly multi-mode state, e.g. traditional frequency anti-correlated
PDCs with very large Schmidt numbers. Equipped with appropriate methods, one can remotely
reshape such PDC photons into arbitrary pulse shapes. By projecting one photon into a chosen
composition of pulsed temporal-modes, we can herald the second photon in a target pulse
shape. Existing methods to accomplish this rely on fast temporal modulation followed by
frequency-resolved intensity detection [12,32], or are limited to time-bin encoded photons [10], or
are based on intensity filtering [33]. An analogous technique has also been deployed to remotely
herald single photons in particular spatial modes [34].

In our approach, the remote state preparation is achieved by coherent selection andmeasurement
of pulsed temporal-modes, instead of intensity detection or filtering. This would also allow a
high efficiency quantum pulse shaping because the remotely shaped single-photon wave packets
are not subject to any filtering or other local modulations, which typically introduce loss and thus
state degradation. Moreover, our technique allows coherent shaping with any time-frequency
modal decomposition.

To directly project upon programmable temporal-modes, we use a sum-frequency generation
between the idler photon and a shaped pump pulse in a dispersion-engineered waveguide, also
known as a quantum pulse gate (QPG) [19,24]. Dispersion engineering ensures that the input
signal and pump are group-velocity matched but walk off significantly from the sum-frequency
signal. Shaping the pump spectrum to γ(ωp), the probability of a successful up-conversion is
proportional to

Pup ∝

∫
dωsγ(−ωs)fs(ωs), (5)
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effectively implementing a projective measurement of the signal amplitude fs(ωs) onto the
broadband time-frequency amplitude γ∗(−ωs) [17]. This technique is applicable to arbitrary
superpositions of field-overlapping temporal modes and can directly access the temporal Schmidt
modes of PDC photon pairs [22]. In previous works, we have thoroughly shown coherence
properties of the QPG and its high fidelity in implementing projective measurements into arbitrary
time-frequency modes [24,35].

4. Experiment

To generate time-frequency entangled states, we use a guided-wave PDC source; an 8 mm
long periodically poled potassium titanyl phosphate waveguide (ppKTP; poling period 117
µm; room temperature; spatially single-mode for PDC photons), see Fig. 3. This versatile
source allows us to create PDC states with different forms of time-frequency correlations by
only reshaping pump pulses, as we have shown previously [24–26]. Orthogonally polarized
down-converted PDC photons, signal and idler, are separated using a polarizing beamsplitter and
subsequently coupled into single-mode fibers and time-of-flight spectrometers [36], comprised of
highly dispersive fibers followed by superconducting nanowire single-photon detectors (SNSPD,
PhotonSpot). Here, we consider two different PDC states (see Fig. 2): (A) with traditional
frequency anti-correlations and (B) a pulsed temporal-mode Bell-like state. The joint spectral
intensity (JSI) of these states, measured by time-of-flight spectrometers, are plotted in Fig. 4(a)
and Fig. 5(a), for states (A) and (B), respectively. The JSI spectra closely resemble the expected
theory, showing that the system behaves as expected. Note that a full characterization would
require a measurement of the JSA, which would include spectral phase information.

Fig. 2. The Schmidt decomposition of two-photon time-frequency correlations, modeled
with parameters used in the experiment. (State A) When the PDC pump is narrow relative to
the phasematching the Schmidt decomposition can be neatly approximated as a decaying
series of matched Hermite-Gauss pulsed temporal-modes. (State B) By matching the pump
and phasematching bandwidths and spectrally shaping the pump pulse, the number of
generated Schmidt modes can be controlled, producing two-photon correlations similar to a
time-frequency Bell state.

To realize temporal-mode selection, in the following, we couple the idler photon to the
QPG, as shown in Fig. 3. The QPG, as discussed in the previous section, is a time-frequency
mode-selective sum-frequency generation process. Our QPG implementation, shown in Fig. 3,
comprises a 17 mm periodically poled lithium niobate waveguide (ppLN; spatially single-mode
at 1540 nm; poling period 4.4 µm; temperature 470 K) with pump pulses synchronized to the
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Fig. 3. Experimental setup. Pump pulses for the PDC and QPG process are shaped
into Hermite-Gauss modes using SLM-based pulse shapers. Signal and idler photons are
generated in a ppKTP waveguide, and the signal photon is measured using a quantum pulse
gate (QPG) based on a ppLN waveguide. The idler spectrum is measured using a dispersive
time-of-flight spectrometer in coincidence with a successful projection from the QPG.
BPF: Bandpass filter. APD: Avalanche photo-diode. BS: beamsplitter. PBS: polarizing
beamsplitter. DM: dichroic mirror. SNSPD: Superconducting nanowire single-photon
detectors. OPO: Optical parametric oscillator. SHG: Second harmonic generation.

input field i.e. PDC idler photons. The pulsed temporal-mode that the QPG selects is controlled
by the shape of its pump pulse, see Eq. (5). To shape the spectral phase and amplitude of pump
pulses, we use a diffractive spatial light modulator (Hamamatsu LCoS) at the focal plane of a
folded 4f setup. At the output port of the QPG, the sum-frequency pulse at 558 nm is isolated
using a 4f filter and coupled into a single-mode fiber, where it is detected with a silicon avalanche
photo-diode (SiAPD, ID Quantique ID100).
To characterize the underlying pulsed temporal-modes of the generated PDC states, we

use a previously developed tomographic method based on the QPG [22,24]. Performing an
informationally complete set of measurements on the idler photons we can reconstruct its reduced
density matrix ρi = trs[ρPDC]. The eigenvalues of the idler photon’s reduced density matrices for
states (A) and (B) are plotted in Fig. 4(b) and Fig. 5(b), respectively. Through these measurements
we determine the idler’s modal decomposition, with its fundamental Gauss-mode centered at
1540.7 nm with a standard deviation of 0.84 nm and 1.43 nm for states (A) and (B), respectively.

The key to our experiment is the use of the QPG to project one PDC photon into a chosen
superposition of Schmidt modes. Heralded on such projective measurements, we record the
spectrum of the PDC’s partner photon, as shown in Fig. 1. Such conditional spectral measurements
on the signal photons is achieved by collecting coincident detection events between the time-
of-flight spectrometer (detecting the idler photon) and the SiAPD at the output of QPG. Our
time-of-flight spectrometer converts a spectral shift of 1 nm to a time delay of 0.58 ns. The
overall theoretical-resolution of our experiment is 0.15 nm, limited by the timing jitter of the
SNSPDs, as well as the jitter of the triggering pulses from the SiAPD. Another source of timing
uncertainties is the mechanical drifts and instabilities of the setup, which can jitter the timing
between between the QPG pump pulse and the PDC photon. To minimize such errors, we take
our measurements over relatively short time scales in which the setup is adequately stable.
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Fig. 4. (a) The joint spectral intensity of the PDC state with a narrowband pump (Gaussian
with standard deviation of 0.3 nm), displaying the expected frequency anti-correlations. (b)
Tomographically reconstructed Schmidt mode decomposition of the idler photon revealing
the underlying temporal modes. Error bars are smaller than the plotted points. (c)
Conditional spectra of signal photon when the idler is projected onto the first four Hermite-
Gauss Schmidt temporal modes (indicated in insets) is shown in red, closely matching the
theoretical expectation (black line). As a comparison, in dashed green lines we plot the
measured marginal spectrum of the signal photons. All conditioned spectra are plotted from
approximately 1500 detection events.
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Fig. 5. Remote state preparation from a time-frequency Bell state. (a) The PDC joint spectral
intensity, and (b) tomographically reconstructed Schmidt mode decomposition of the idler
photon, with error bars smaller than the plotted points. Notably, the tomography shows that
mainly two time-frequency modes (the zeroth and first order Hermite-Gauss) are present. (c)
The signal spectrum (in red) conditioned on projections of the form ,
for θ =

{
0, π4 ,

π
2 ,

3π
4

}
, respectively. The theoretical expectation is given by the black line,

and measured non-mode-resolved heralded spectrum of the signal photons in dashed green
lines. (d) While varying the superposition weight θ, a continuous shift in the conditional
signal spectrum is observed. The conditioned spectra in (c,d) are extracted from between
2900 and 5800 detection events, depending on the projection mode.
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5. Results and discussion

In this section we present remote shaping of PDC photons, considering the states (A) and (B)
illustrated in Fig. 2. Our experimental result for the traditional two-photon state with frequency
anti-correlations, state (A), is shown in Fig. 4(c). When we project onto one of the Hermite-Gauss
Schmidt modes of the idler photon, we find that the measured spectrum of the signal photon
is as expected for the corresponding Schmidt mode. This correspondence is clear for the first
three modes, but weakens for the fourth due to low count rates arising from the small Schmidt
coefficient.

To show that we can remotely prepare superpositions of spectral amplitudes, in the following,
we use state (B) with pulsed temporal-mode Bell-like correlation. The reduced state of the idler
photon is almost completely described as a mixture of the zeroth- and first-order Hermite-Gauss
modes. Note that, in the experiment, the relative amplitude between the two modes is unbalanced
due to the imperfect symmetric group-velocity matching of the ppKTP source Fig. 2. To remotely
shape the signal photon’s spectrum, we project the idler photon into superposition states of the
Hermite-Gauss modes. We start our experiments by operating on the computational basis of our
maximally entangled temporal-mode state. As seen in Fig. 5(c), when we project the idler into a
superposition state, the signal spectrum takes the form of the conjugate superposition, consistent
to our time-frequency entangled state. As a comparison, we also plot the measured marginal
spectrum of the signal photon in dashed green lines, corresponding to a non-mode-resolved
measurement. Furthermore, in Fig. 5(d), we project upon twelve superposition states, spanning
the x-z plane of the Bloch sphere, and show a continuous reshaping of the signal spectrum
dependent on the projection employed.
Both measurements described above show that the system behaves as expected, and that we

can remotely prepare photons with any modal composition. While these measurement results are
in excellent agreement with the coherent multi-mode theory, they lack phase information and
assume coherence in the state generation and the mode-selective projections.

The coherence of the system can be probed without resorting to a full JSA analysis. One can
test the presence of coherence by assuming that coherence is not present in multiple ways and
compare the measured results. In the following, we compare our experimental results with four
possible theoretical settings:

• case 1: the two-photon state is the entangled state (B), and we project upon temporal
modes coherently, as formulated throughout the previous sections;

• case 2: the two-photon state is an incoherent mixture of the Schmidt modes taken from the
state (B) (i.e. ), and we project upon temporal
modes coherently;

• case 3: the two-photon state is the entangled state (B), but our measurement is intensity-only
spectral filtering with the same shape as the spectral intensity of the intended temporal
modes (i.e. Pup ∝

∫
dωs |γ(−ωs)|

2fs(ωs));

• case 4: the two-photon state is an incoherent mixture, and the measurements are incoherent
intensity-only measurements.

In Fig. 6, we plot our experimental results versus the simulated outcomes from the above four
cases. Although among all cases for specific projections we can find resemblance between theory
and experiment, only the fully coherent model (case 1) shows a consistent agreement with our
experimental data. For a more qualitative comparison, we print the similarity value between
theory and experiment, above each plot. This shows the essential role of coherence in state
preparation and mode-resolved measurements.
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Fig. 6. Comparison of our experimental results with four theory models: coherent, partially
coherent, and incoherent multi-mode theories. The signal spectrum (in red) is conditioned
on idler projections with θ = 0 (top row), θ = π

4 (middle row), and θ = π
2 (bottom row).

The solid blue lines are modeled by four different theory models detailed in the main text.
To quantify the level of agreement between the experimental outcome and different models,
we print the similarity value next to each plot, calculated as |

∫
dλs

√
f (λs)f̃ (λs)|.

6. Conclusion

We have shown time-frequency reshaping of PDC photons through mode-selective measurements.
This technique allows remote shaping of PDC photons into any coherent composition of their
Schmidt modes. This can be further extended with highly multi-mode and entangled photon pair
sources for quantum communication protocols andmore complex remote shaping of single-photon
states in quantum networks.
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