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Nonlinear SU(1,1) interferometers are
fruitful and promising tools for spec-
tral engineering and precise measurements
with phase sensitivity below the classical
bound. Such interferometers have been
successfully realized in bulk and fiber-
based configurations. However, rapidly
developing integrated technologies provide
higher efficiencies, smaller footprints, and
pave the way to quantum-enhanced on-
chip interferometry. In this work, we the-
oretically realised an integrated architec-
ture of the multimode SU(1,1) interferom-
eter which can be applied to various inte-
grated platforms. The presented interfer-
ometer includes a polarization converter
between two photon sources and utilizes
a continuous-wave (CW) pump. Based
on the potassium titanyl phosphate (KTP)
platform, we show that this configuration
results in almost perfect destructive inter-
ference at the output and supersensitiv-
ity regions below the classical limit. In
addition, we discuss the fundamental dif-
ference between single-mode and highly
multimode SU(1,1) interferometers in the
properties of phase sensitivity and its lim-
its. Finally, we explore how to improve
the phase sensitivity by filtering the out-
put radiation and using different seeding
states in different modes with various de-
tection strategies.

1 Introduction
One of the main tasks in Quantum Metrology re-
search is to improve both methods and techniques
to estimate the phase sensitivity of interferom-
eters [1]. It is well known that optical phase
sensing is generally limited by the noise due to
both photons statistics and the quantum nature
of light [2, 3]. The first bound, commonly called
shot noise limit (SNL), describes the noise perfor-
mance of an ideal classical field and is limited by

classical correlations. The SNL is proportional to
1/
√
N , where N is the number of photons in the

interferometer [4, 5]. The second bound condi-
tion, known as Heisenberg limit (HL), stems from
the quantum uncertainty principle and is propor-
tional to 1/N [6].

The shot noise limit can be overcome by using
quantum states in a typical Mach-Zehnder inter-
ferometer. For example, one can insert a Fock
state or the more exotic NOON state [7] into in-
put channels of such an interferometer. However,
the preparation of such exotic states is a challeng-
ing task. The nonlinear SU(1,1) interferometers
can beat the SNL even without using quantum
states as inputs [8]. This type of interferome-
ter consists of two nonlinear processes [9] (some-
times one in a truncated version [10, 11]), such
as four-wave-mixing (FWM) or parametric down-
conversion (PDC).

The phase sensitivity of this class of inter-
ferometers has been investigated for spectrally
single-mode sources [12, 13, 14], including gain-
unbalanced [15, 16] and fully quantum three-
mode [17] configurations, as well as configura-
tions with different input states, such as coherent
light [18], squeezed states [19], a mixture of coher-
ent and squeezing states [20, 21, 22] and a mix-
ture of thermal and squeezed states [23]. These
studies have shown that it is generally possible
to overcome the shot noise limit and even reach
the Heisenberg limit. Moreover, SU(1,1) inter-
ferometers can provide different benefits with re-
spect to other interferometers, not only in terms
of high-precision measurements, but also because
of the possibility to perform a joint measure-
ment of multiple observables [24] and due to the
advantages of robustness against external losses,
namely losses due to an inefficient detection sys-
tem [25, 26, 27, 28].

Nevertheless, the single-mode picture, com-
monly used to analyse SU(1,1) interferometers, is
merely an approximation of what can realistically
be obtained in experiments. Indeed, PDC sources
generate photon pairs with finite spectral and
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spatial bandwidths and generally in more than
a single mode. Therefore, the complete descrip-
tion of SU(1,1) interferometers should account for
the presence of such spatial [29, 30, 31] and spec-
tral modes [32, 33, 34] in order to correctly en-
gineer the system [35] and accordingly maximize
the phase sensitivity [36].

The theoretical analysis of SU(1,1) interferom-
eters has been limited so far to free space bulk
[37] or fiber-based systems [38, 39]. However, it
is of particular interest to extend such analysis to
other integrated systems [40, 41, 42], which can
provide higher efficiencies, smaller footprints and
pave the way to quantum-enhanced on-chip in-
terferometry. Such integrated systems have been
already utilized for instance in boson sampling
[43] and other elements of quantum computing,
such as quantum walk [44] and Hong-Ou-Mandel
interference [45].

In this work, we present a theoretical descrip-
tion of the multimode integrated SU(1,1) interfer-
ometer. The presented architecture can be real-
ized on various integrated platforms. As an exam-
ple, we investigate the spectral properties of the
monolithic SU(1,1) interferometer based on the
potassium titanyl phosphate (KTP) platform and
demonstrate conditions for obtaining the phase
sensitivity below the shot noise limit.

The paper is organized as follows: in the sec-
ond section, a brief introduction of the theoret-
ical model and the phase sensitivity calculation
strategy are derived and discussed. In the third
section, we outline two different sample designs:
the conventional bulk architecture implemented
on the integrated platform and a new developed
integrated design. We demonstrate that this new
design allows the phase sensitivity to overcome
the SNL and generate supersensitivity bands. In
the fourth section, we show how phase sensitivity
can be improved by using a frequency filter. In
the last section, we extend the analysis by consid-
ering non-vacuum input states along with differ-
ent detection strategies, i.e. direct detection and
homodyne detection.

2 Theoretical model

The Hamiltonian describing the whole interfer-
ence process inside the SU(1,1) interferometer
can be represented via the joint spectral ampli-

tude (JSA) F (ωs, ωi) [32]:

Ĥ = ih̄Γ
∫
dωsdωiF (ωs, ωi)â†sâ

†
i + h.c., (1)

where Γ is the coupling constant containing the
second order susceptibility χ(2), the pump inten-
sity I and the length of PDC sections; ωs and ωi
are the frequencies of the signal and idler pho-
tons, respectively. Here we neglect the effects of
time ordering. However, such an approximation
is well satisfied for the SU (1,1) interferometer
due to the effective narrowing of the spectrum be-
cause of the nonlinear interference [33]. The joint
spectral amplitude depends on both the spectral
properties of the pump laser and the geometry of
the system, and it is generally expressed as:

F (ωs, ωi) = C α(ωs, ωi)f(ωs, ωi), (2)

where C is the normalization constant. The func-
tion α(ωs, ωi) depends on the spectral properties
of the pump and has a Gaussian profile:

α(ωs, ωi) = e−
(ωs+ωi−ωp)2τ2

2 , (3)

where τ is the pulse duration of the pump laser,
ωp is the pump frequency.

The function f(ωs, ωi) is the phase matching
function. In a general form, for both integrated
circuits with two PDC sections of equal length L
investigated in this work, the function f(ωs, ωi)
is given by [46, 47, 48, 49]:

f(ωs, ωi) = 1
2L

∫ 2L+l

0
dz g(z) ei

∫ z
0 dξ∆k(ξ), (4)

where g(z) is the spatial profile of the second-
order nonlinear susceptibility [50], l is the dis-
tance between two PDC sections, ∆k(ξ) is the
phase matching profile, corresponding to the
type-II PDC process.

By solving the Heisenberg equations for the
Hamiltonian in Eq.(1), one can calculate the
mean number of signal photons 〈N〉 and its vari-
ance 〈∆2N〉 for a given input state of the interfer-
ometer, see Appendix. Consequently, the phase
sensitivity can be calculated as:

|∆φ| =
∣∣∣∣ ∆N
∂〈N〉/∂φ

∣∣∣∣, (5)

where φ is the phase shift undergone by pho-
tons inside the interferometer. Interferometers
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are characterized by the supersensitivity regions
if the phase sensitivity overcomes the shot noise
limit:

∆φSNL = 1√
〈Nin〉

, (6)

where Nin is the number of interfering photons
inside the interferometer. Starting from the next
section we will use the phase sensitivity normal-
ized in respect to the shot noise limit.

3 Interferometer optimization
In contrast to bulk optics, where temporal dy-
namics of the PDC photons can often be ne-
glected, the long interaction lengths in integrated
SU(1,1) require a careful design that takes into
account the temporal walk-off and stretching of
pulses in the material due to group velocity dis-
persion.

3.1 The conventional bulk architecture imple-
mented on the integrated platform
The conventional bulk optics design of the
SU(1,1) interferometer, transferred to a fully in-
tegrated platform, is shown in Fig.2.

In this scheme, a pump laser interacts with the
first crystal creating a pair of signal-idler pho-
tons. Along the propagation path, the phase of
one or more of the fields can be modulated via

an active element. Henceforth, we consider only
a phase modulation of the e-polarized idler field,
which can be achieved e.g. via electrooptic mod-
ulation, that changes the refractive index profile
n(ωi). For this reason, in the modulator region we
will consider a new idler wavevector k′i, such that
δke = ke−k′e is the variation of the idler wavevec-
tor induced by the phase modulator. Afterwards,
the three fields interact in the second PDC source
and finally the generated photons are detected.

Figure 2: A schematic model of the collinear integrated
SU(1,1) interferometer. An incoming pump laser in-
teracts with a periodic poled PDC section, generating
a signal-idler photon pairs. In the propagation path,
idler photon undergoes a phase modulation (PM). After-
wards, both the generated photons and the pump beam
interact in the second PDC section. Finally, the signal
photon is detected. Different colours for signal and idler
photons are used in order to distinguish vertical and hor-
izontal polarizations.

The spatial profile g(z) of the second-order
nonlinear susceptibility of the sample under con-
sideration can be written as:

g(z) =
{
squareΛ(z) 0 < z < L ∨ L+ l < z < 2L+ l

1 L < z < l + L
, (7)

where squareΛ(z) is the periodic square function
that oscillates between -1 and +1 with periodic-
ity Λ and describes periodic poling. Taking into

account the first term of the Fourier expansion of
Eq.(7) in the poling region, the JSA of the sam-
ple, as calculated by equations (2), (4), is given
by:

F (ωs, ωi) = C

2Lα(ωs, ωi)
(∫ L

0
dz ei

2πz
Λ ei

∫ z
0 dξ∆k(ξ) +

∫ L+l

L
dz ei

∫ z
0 dξ∆k(ξ) +

∫ 2L+l

L+l
dz ei

2πz
Λ ei

∫ z
0 dξ∆k(ξ)

)
= Cα(ωs, ωi) sinc

[∆βL
2

]
× cos

(2∆βL+ ∆βl + ∆β′l
4

)
ei(∆βL+∆βl/4+∆β′l/4),

(8)

where ∆β = ko(ωp) − ko(ωs) − ke(ωi) + 2π/Λ is
the phase mismatch, compensated by the poling

period Λ, ∆β′ = ko(ωp)− ko(ωs)− k′e(ωi) + 2π/Λ
is the phase mismatch in the modulator region,
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Figure 1: The joint spectral intensity |F (ωs, ωi)|2 depending on the phase implemented by the phase modulator: (a)
φ = 0, (b) φ = π/2 and (c) φ = π. The following parameters are chosen: the CW laser, the KTP (potassium titanyl
phosphate) platform, the pump wavelength λp = 766nm, the crystal length L = 8mm, the distance between the
two poling sections l = 10mm, the period of poling Λ = 126µm.

while indices "o" and "e" denote the "ordinary"
and "extraordinary" polarization, respectively.
The first integral in Eq.(8) contains the phase
matching function describing the first PDC sec-
tion, whereas the third integral describes both the
propagation of all beams inside the interferometer
and the phase matching in the second PDC sec-
tion. Note, that terms corresponding to the linear
propagation in the waveguide are also character-
ized by the mismatch ∆β. This is a consequence
of the fact that, in our consideration, the poling
profile of the second PDC section is in phase with
the poling profile of the first PDC section. This
does not apply to two independent gratings. The
second integral corresponds to the generation of
PDC light between the two poling regions, the
contribution of this integral is neglected, since
the absence of the grid makes the integrand a
fast oscillating function resulting in a negligible
magnitude of the integral.

The variation of n(ωi) can be experimentally
realized by applying an external voltage. In the-
ory, since the phase solely affects the idler photon,
we can write
∆β′l

2 = ∆βl
2 +ke(ωi)l − k′e(ωi)l

2 = ∆βl
2 +δke(ωi)l

2 .

(9)
The average phase imparted by the phase mod-
ulator to the idler field can be then defined as
φ = δke(ωp/2)l/2, and Eq.(9) can be rewritten
as:

∆β′l
2 = ∆βl

2 + δke(ωi)φ
δke(ωp/2) . (10)

Although the mathematical model presented so
far does not depend on the waveguide material
explicitly, here onwards we will focus on an inte-
grated SU(1,1) interferometer based on the KTP

platform. Fig.1 shows how the applied phase shift
drastically modifies the shape of the joint spec-
tral intensity (JSI) |F (ωs, ωi)|2 and leads to the
modulation of both signal and idler spectra. It is
important to notice that, in such configuration,
for any values of phase φ a non-vanishing mean
number of photons exists: due to different polar-
izations and, as a consequence, different refractive
index profiles (and group velocities) of signal and
idler photons, there is no φ values that can lead to
perfect destructive interference in the JSA. Since
destructive interference is required for the obser-
vation of supersensitivity [1], the proposed design
based on the conventional bulk SU(1,1) architec-
ture is inadequate for photon sensing applications
in integrated optics.

Nevertheless, this problem can be overcome as
shown in the next section.

3.2 The new integrated architecture

To obtain almost ideal destructive interference
at the output of an integrated SU (1,1) inter-
ferometer, the compensation for the time delay
between signal and idler photons, arising due to
the difference in their group velocities, is strictly
required. The integrated SU(1,1) interferometer
which takes into account such a compensation is
depicted in Fig. 3. This interferometer has the
same layout as the one previously presented, with
the addition of a polarisation converter (PC) at
the centre of the device. The PC switches po-
larizations of the signal and the idler photons in
order to compensate for the arising time delay.

The JSA characterizing such interferometer
can be obtained by following the same procedure
as before, but taking into account the change in
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the phase matching after PC:

F (ωs, ωi) =

= C

2 α(ωs, ωi)
[

sinc
[∆βL

2

]
ei∆βL/2 + sinc

[∆βL
2

]
× exp

{
i

(∆βL
2 + ∆βL+ (∆β′ + ∆β)l

2

)}]
,

(11)

where ∆β = ko(ωp) − ke(ωs) − ko(ωi) + 2π/Λ is
the phase matching after the polarization switch.
Note that the polarization of the signal and idler
fields in ∆β is different compared to ∆β.

Figure 3: A schematic model of the integrated SU(1,1)
interferometer with the time delay compensation. An
incoming pump laser interacts with a periodic poled PDC
section, where signal-idler photons pairs are generated.
The idler photon undergoes a phase modulation (PM).
Afterwards, a polarization converter (PC) located in the
middle of the device switches polarizations of signal and
idler photons. Finally, all beams interact in the second
PDC section. In the end, the signal photon is detected.
Different colours are used in order to distinguish vertical
(red) and horizontal (blue) polarizations.

To avoid additional compensation for the time
delay between signal/idler and pump photons

and, at the same time, to reduce the uncompen-
sated second-order effects, we use a CW laser.
Indeed, the stretching of the pump pulse is in-
versely proportional to the square of the pulse
duration. Therefore, in the CW pump case, this
stretching can be neglected. The high degree of
correlation between the signal and the idler pho-
tons determined by the employment of the CW
laser allows us to assume ωi = ωp − ωs. Substi-
tuting this expression into the Taylor expansion
of ∆β in the proximity of ωp/2 and considering
terms up to the first order inclusive, we have:

∆β ≈ ko(ωp)− ko(ωp/2)− ke(ωp/2) + 2π
Λ︸ ︷︷ ︸

=0

−∂ko
∂ω
|ωp

2
(ωs − ωp/2)− ∂ke

∂ω
|ωp

2
(ωp/2− ωs).

(12)
Since the first line in Eq.(12) vanishes due to the
definition of periodic poling, the phase matching
is simply:

∆β ≈ − Ω
vo(ωp/2) + Ω

ve(ωp/2) , (13)

where the frequency detuning Ω = ωs−ωp/2 and
the group velocity v = (∂k/∂ω)−1 are introduced.
By applying the same strategy to ∆β we finally
obtain:

∆β ≈ − Ω
ve(ωp/2) + Ω

vo(ωp/2) , (14)

which means that ∆β ' −∆β.
By substituting this last equality in Eq.(11),

we get:

F (ωs, ωi) ' C δ(ωp − ωs − ωi) sinc
[∆βL

2

]
cos

[
δke(ωi)φ

2δke(ωp/2)

]
exp

{
i

2

(
∆βL+ δke(ωi)φ

2δke(ωp/2)

)}
, (15)

where δ(ωp − ωs − ωi) is the Dirac delta func-
tion describing the CW pump. Numerically, the
CW regime is achieved by setting the pulse du-
ration τ in Eq.(11) so long that the pump can
cover entirely the whole length of the interferom-
eter; this condition is mathematically expressed
as cτ � 2L+ l.

Since the relation δke(ωi)
δke(ωp/2) ' 1 in the vicinity

of ωp/2, it can be clearly seen that Eq.(15) results
in the JSA of a single PDC process modulated by

cos(φ/2). Due to this modulation it is possible to
achieve almost perfect destructive interference in
a large bandwidth around ωp/2 in the JSA using
specific values of φ (which is in stark contrast to
the non-compensated configuration, whose JSA
profiles are presented in Fig.1).

This regime, where the JSA is drastically at-
tenuated, can be achieved with relative simplic-
ity thanks to the spectral feature of our device
based on the KTP (potassium titanyl phosphate)
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Figure 4: The KTP platform. (a) The pump spectral bandwidth α(ωs, ωi), (b) the phase matching function |f(ωs, ωi)|
and (c) the joint spectral intensity |F (ωs, ωi)|2 in the pulsed regime when φ ' π. The pulse duration is τ = 0.35ps,
L = 8mm, λp = 766nm, l = 10mm, Λ = 126µm. By increasing the pulse duration, α(ωs, ωi) gets narrower
with respect to the ωs = ωp − ωi diagonal, this leads to zero overlap between α(ωs, ωi) and f(ωs, ωi) and purely
destructive interference.

platform. In this framework, the natural orien-
tation of the phase matching function f(ωs, ωi)
in KTP, whose slope is typically positive in the
’ωs − ωi’ diagram, together with the presence of
a PC make sure that the phase matching func-
tion of the SU(1,1) interferometer lies along the
ωs = ωi diagonal (Fig. 4b); moreover, the ad-
ditional phase induces a modulation leading to a
destructive interference at φ = π, in which the
phase matching function vanishes along the an-
tidiagonal ωp = ωs + ωi.

Although the presence of the phase modulator
and the PC changes the structure of the phase
matching function and inhibits the output light
intensity, the pulsed regime with a broad pump
spectrum α(ωs, ωi), see Fig.4a, leads to the gener-
ation of a notable number of photons and a non-
vanishing JSA with two high peaks, as demon-
strated in Fig.4c. However, such residual light
can be further inhibited by decreasing the pump
spectral bandwidth (using a CW laser), in order
to dramatically reduce the overlapping region be-
tween α(ωs, ωi) and f(ωs, ωi) and minimize the
number of generated photons. In this context,
the use of the CW pump laser is an important
and necessary requirement in order to achieve a
notable reduction of the mean number of photons.

The interference profile, namely the integral
number of photons depending on the phase, is
presented in Fig.5 for two different types of pump
lasers: the pulsed and the CW laser. A compar-
ison of the two curves was performed by making
use of different pump powers in order to achieve
a similar number of output photons. One can

clearly observe that the use of the CW laser dras-
tically increases the visibility of the modulation
and allows the photon number to drop close to
zero.

Figure 5: The comparison between the number of pho-
tons in the case of pulsed laser (the pulse duration
τ = 0.35ps, red line) and CW regime. In order to have a
situation with the resulting number of photons are nearly
identical at φ = 0, different pump intensities are used
for the two pumping regimes. The following parame-
ters are chosen: L = 8mm, λp = 766nm, l = 10mm,
Λ = 126µm.

The behaviour of the phase sensitivity, de-
fined in Eq.(5) and normalized to the shot noise
limit Eq.(6), is presented in Fig.6 for different
gains, where we introduce the gain parameter
γ = G(0)

√
λ1(0), see Appendix. In this frame-

work, the variation of γ is determined by chang-
ing the coupling constant Γ. This allows to span
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a range of mean photon number between 〈N(φ =
0)〉 ≈ 0.12 for γ ' 0.04, and 〈N(φ = 0)〉 ≈ 109

for γ ' 10.0.

Figure 6: The phase sensitivity normalized to SNL versus
phase at different gains. The SNL is shown by the black
line. The following parameters are chosen and fixed for
all further calculations: the CW laser, L = 8mm, λp =
766nm, l = 10mm, Λ = 126µm.

Figure 7: The minimum values of the normalized phase
sensitivity presented in Fig.6 versus gain γ. The higher
the gain, the faster the phase sensitivity grows. The SNL
is plotted in black.

The central peak at φ = π in Fig.6 is a fea-
ture of the multimode structure of the considered
interferometer and stems from the non-perfect in-
terference process: due to the fact that the rela-
tion ∆β ' −∆β holds only for the first order
of the Taylor expansion around the central fre-

quency ωp/2, and not strictly for large frequency
detuning |Ω| > 0. As a result, the mean num-
ber of photons and its variance are not entirely
zero for this value of φ, whereas the derivative
∂〈N〉/∂φ is exactly zero. This leads to a degra-
dation in phase sensitivity with increasing gain
and reveals one of the deepest differences between
phase sensitivity analysis for single-mode plane-
wave interferometers, typically presented in the
literature [12, 18, 19, 20], and the multimode sce-
nario considered here, where the broad spectral
distribution of the generated light is taken into
account. Although the proposed scheme improves
the visibility of interference pattern significantly,
a perfect interference can never occur because of
the complex material dispersion of the integrated
device.

Fig.7 shows the minimum values of the normal-
ized phase sensitivity for each gain. It is clearly
seen that the phase sensitivity gets worse with
enhancing gain or pump power. Explicit calcula-
tions of the mean photon number and its variance
can be found in the Appendix, where it is shown
that the main trend of the normalized phase sen-
sitivity with increasing gain is roughly defined as:

∆φ
∆φSNL

≈ sinh[γ/2]
γ

. (16)

This trend can be observed in Fig.7 and reflects a
progressive worsening of ∆φ as the gain increases.
However, the phase sensitivity can be improved
by using a filtering of the output radiation or a
seed, both strategies will be investigated below.

4 Filtering
In this section, we demonstrate how to improve
the phase sensitivity of the SU (1,1) interferom-
eter by filtering a specific frequency range in the
output radiation.

Since filters select specific spectral bandwidths,
working in the Schmidt basis is no longer mean-
ingful as the Schmidt operators include the in-
tegration over all frequencies. Hence, it is more
convenient to calculate the relevant quantities by
using the output annihilation and creation op-
erators expressed in the plane wave basis, intro-
duced in [29] and directly presented in Appendix,
see Eq.(28). Using the output plane wave oper-
ators Eq.(28), the number of signal photons in a
certain spectral range 2δ around the central fre-
quency ωp/2 is given by:
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Figure 8: The normalized JSI at φ = 0: (a) without filter, (b) with the filter (bandwidth 5.71·1012 rad/s).

〈Ns(φ)〉 =
∫ ωp/2+δ

ωp/2−δ
dωs〈a†outs (ωs)aouts (ωs)〉 =

∑
k

sinh2 γk

∫ ωp/2+δ

ωp/2−δ
dωs|uk(ωs, φ)|2, (17)

where δ determines the filter bandwidth and γk = G(φ)
√
λk(φ), see Appendix. Similarly, we can

calculate the variance of the number of photons:

〈∆2Ns(φ)〉 = 〈Ns(φ)〉+
∑
kk′

∣∣∣∣∣
∫ ωp/2+δ

ωp/2−δ
dωsu

∗
k(ωs, φ)uk′(ωs, φ) sinh γk sinh γk′

∣∣∣∣∣
2

, (18)

where the first term corresponds to Eq.(17).
Using both the variance in Eq.(18) and the
derivative of Eq.(17), the phase sensitivity in a fil-
tering case can be calculated according to Eq.(5).

It is important to specify that considered filters
should also be taken into account when calculat-
ing the SNL via Eq.(6). In this way, the number
of photons in the SNL corresponds to the num-
ber of signal photons generated by a single PDC
section and subject to the band-pass filter, these
photons then enter the phase modulator:

〈Nin〉 =
∑
k

sinh2 [G1
√
ηk]
∫ ωp/2+δ

ωp/2−δ
dωs|ūk(ωs)|2,

(19)

where ūk(ωs) is the orthonormal set of signal
Schmidt modes corresponding to a single periodic
poled waveguide, both G1 and ηk are defined in
the Appendix.

The filter we used selects a range with band-
width 2δ = 5.71 · 1012rad/s around the central
frequency, see Fig.(8). This filter cuts the main

part of the JSA with the central peak, exclud-
ing the second order peaks of the sinc function in
Eq.(15), and allows us to investigate the influence
of the side-lobes of the JSA on the phase sensitiv-
ity. The normalized phase sensitivity in the fil-
tered case at different gains is presented in Fig.9.
It can be seen that in the region far from φ = π,
the filter provides similar results to the no-filter
case. However, around φ = π, filtering gives a
significant improvement in the phase sensitivity
both in depth and in the expansion of the su-
persensitivity region, highlighted in Fig.9d. This
improvement indicates the negative influence of
the side lobes. Indeed, removing the side lobes
does not dramatically change the final number of
photons with respect to the case without a fil-
ter, nevertheless, it reduces the influence of the
residual photons stemming from the non-perfect
compensation in JSA for large frequency detun-
ing |Ω| > 0 at φ ' π.
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Figure 9: The normalized phase sensitivity with and without a filter for different gains: (a) γ = 1.3, (b) γ = 2.5 and
(c) γ = 5.0. (d) The zoom of the supersensitivity region for γ = 2.5 . The solid red line shows the case without a
filter, the dashed blue line presents the filter case.

Figure 10: The minimum values of the normalized phase
sensitivity versus gain γ with and without the use of the
filter. The SNL is represented by a solid black line.

The best phase sensitivity achieved with and
without the filter at varying gains is shown in
Fig.10. This picture demonstrates that the ac-
tion of the filter guarantees better phase sensitiv-
ity with respect to the no-filter case, but at the

same time confirms the tendency of worsening the
phase sensitivity with gain as in the case without
a filter.

5 Seeded SU(1,1)

The description of the SU(1,1) interferometer in
terms of broadband spectral modes reveals the
possibility to prepare the seed either at the se-
lected frequency or at the selected spectral mode
of the interferometer (or their superposition). In
this section, we analyze the seeding of the inter-
ferometer by a single photon in the first Schmidt
mode. Other cases are analysed in the Appenix
B. The seed is performed only for the signal mode
of the interferometer (the vacuum input for the
idler mode), which can be done due to the dis-
tinguishability of photons because of their dif-
ferent polarizations. Since the Schmidt modes
of the SU(1,1) interferometer depend on the in-
ternal phase, we suppose to utilise the radiation
generated by the second interferometer to prepare
a seed in the selected phase-dependent Schmidt
mode.
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5.1 Direct detection

When seeding, the detection strategy is impor-
tant for the phase sensitivity. In this subsection
we consider direct detection, as was done in the
previous section without seeding. Therefore, the
protocol as well as the set of operators we need in
order to estimate the phase sensitivity in Eq.(5)
are the same as before, but the initial states are
different.

5.1.1 Single photon in the first Schmidt mode

Having a single photon in the first Schmidt mode,
the input state of the interferometer is given by:

|ψ〉in = |1〉A1 |0〉An6=1 |0〉Bn . (20)

This state shows that only the first Schmidt mode
of the signal photon is seeded, while the vacuum
stands for other input signal Schmidt modes and
all idler modes. Direct calculations show that the
output number of signal photons in this configu-
ration is:

〈Ns〉 =
∑
k

sinh2 γk + 1 + sinh2 γ1. (21)

The first term in Eq.(21) is the vacuum term
obtained without a seed and already known in
Eq.(29). The second and the third terms appear
because of the seed: the unity term describes the
single photon, whereas the last term is the sur-
plus of photons in the signal mode generated by
the seed. The variance of the number of photons
is given by:

〈∆2Ns〉 =
∑
k

sinh2 γk cosh2 γk+sinh2 γ1 cosh2 γ1.

(22)
The normalized phase sensitivity as a function
of phase for different gains is plotted in Fig.11.
Fig.12 presents the best phase sensitivity for each
gain. Overall, this figure shows a similar be-
haviour with respect to the case with a vacuum
seed, except for small gains when the number of
PDC photons is less than one: for this region, the
phase sensitivity becomes drastically worse.

This is due to the fact that the shot noise limit
in the case of the single-photon-seed

∆φSNL = 1√
1 + sinh2[C1

√
η1] +

∑
k sinh2[C1

√
ηk]

(23)

tends to unity for small gains, or in other words,
only the seeded photon contributes to SNL; while,
the non-normalized phase sensitivity is still pro-
portional to 1/Γ.

Figure 11: The normalized phase sensitivity on the phase
for different gains. The first Schmidt mode of the sig-
nal photon is seeded with a single photon. The SNL is
represented by a solid black line.

Figure 12: The phase sensitivity trend in Fig.11 at the
point of minimum with respect to the gain (red circles)
compared to the no-seeding case (black squares). The
SNL is plotted in black. The insert shows the zoom of
the phase sensitivity in the seeded case for small gain
values.

For gain values greater than unity, the second
and third terms dominate in the SNL, and the
phase sensitivity grows exponentially, similarly to
the case without a seed, see Fig.(12). In other
words, the single-photon seed leads to an imbal-
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ance in the signal-idler photon correlations for
low gains, which destroys the phase sensitivity
in this region. The analysis of other single-mode
seeding cases and detection stratagies shows that
such inefficiency of a single-mode seed is an intrin-
sic property of a multimode interferometer that
fundamentally distinguishes it from a single-mode
system.

6 Conclusion

In this work, we presented a detailed theoreti-
cal description of a fully integrated multimode
SU(1,1) interferometer. We demonstrated that
material dispersion complicates the interferome-
ter setup and special integrated designs are re-
quired. The presented interferometer includes a
polarization converter located between the two
photon sources, which allows us to compensate
for the time delay arising between signal and
idler photons. The use of the CW laser allows
us to avoid additional time compensation for the
pump photons and, at the same time, to reduce
the influence of uncompensated second-order ef-
fects, that results in the supersensitivity regions
below the shot noise limit. The spectral proper-
ties of such interferometer were investigated and
appropriate conditions for the best phase sensi-
tivity below the shot noise limit were found and
analysed. Interestingly, the presented configura-
tion leads to a situation where the multimode sys-
tem realized with using a CW laser outperforms
the single-Schmidt-mode system realized with a
pulsed laser.

In addition, we investigated the features of the
phase sensitivity with an increase in the gain of
the process and show the degradation of the phase
sensitivity with increasing gain due to the multi-
mode structure of generated light.

Finally, we discuss the impact of filtering and
seeding on the phase sensitivity. We show that
using filtering one can remove the uncompensated
radiation and improve the phase sensitivity both
in depth and in the expansion of the supersensi-
tivity regions. However, the investigated seeds in
the signal mode do not improve the phase sensi-
tivity and even completely destroy the supersen-
sitivity regions in the case of a bright single-mode
seed. The reason is the destruction of signal-
idler photon correlations, which are strongly re-
quired for the observation of supersensitivity in

the highly multimode regime.
This work stresses the fundamental difference

between the single-plane-wave-mode and strongly
multimode interferometers in the behaviour of
the phase sensitivity. Taking into account the
spectral features of photon sources is an impor-
tant point for more pragmatic descriptions of this
type of interferometer and future experimental
implementations and investigations. Moreover,
this work demonstrates that the introduction of
spectral modes in the phase sensitivity analysis
could open new frontiers in quantum metrology:
it was shown how an accurate spectral engineer-
ing in terms of mode scaling and frequency filter-
ing determines deep changes in final results; fur-
thermore, a large spectrum of seeding strategies
can be explored. Finally, the impact of internal
losses on the performance of the multimode inte-
grated nonlinear interferometer is an important
open question that will be a scope for future re-
search.

7 ACKNOWLEDGMENTS
We acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (DFG) via
TRR 142/2, project C02. P. R. Sh. thanks
the state of North Rhine-Westphalia for support
by the Landesprogramm für geschlechtergerechte
Hochschulen. We also thank the PC2 (Pader-
born Center for Parallel Computing) for provid-
ing computing time.

References
[1] M. V. Chekhova and Z. Y. Ou. “Non-

linear interferometers in quantum op-
tics”. In: Advances in Optics and Pho-
tonics 8.1 (Mar. 2016), pp. 104–155. doi:
10.1364/AOP.8.000104.

[2] Carlton M. Caves. “Quantum-mechanical
noise in an interferometer”. In: Physical Re-
view D 23 (8 Apr. 1981), pp. 1693–1708.
doi: 10.1103/PhysRevD.23.1693.

[3] Carlton M. Caves. “Quantum limits on
noise in linear amplifiers”. In: Physical Re-
view D 26 (8 Oct. 1982), pp. 1817–1839.
doi: 10.1103/PhysRevD.26.1817.

Accepted in Quantum 2021-05-26, click title to verify. Published under CC-BY 4.0. 11

https://doi.org/10.1364/AOP.8.000104
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.26.1817


[4] Rafal Demkowicz-Dobrzański, Marcin
Jarzyna, and Jan Kołodyński. “Chapter
Four - Quantum Limits in Optical Interfer-
ometry”. In: Progress in Optics. Ed. by E.
Wolf. Vol. 60. Elsevier, 2015, pp. 345–435.
doi: 10.1016/bs.po.2015.02.003.

[5] Sergei Slussarenko et al. “Unconditional vi-
olation of the shot-noise limit in photonic
quantum metrology”. In: Nature Photonics
11.11 (2017), p. 700. doi: 10.1038/s41566-
017-0011-5.

[6] Z. Y. Ou. “Fundamental quantum limit in
precision phase measurement”. In: Physical
Review A 55 (4 Apr. 1997), pp. 2598–2609.
doi: 10.1103/PhysRevA.55.2598.

[7] Jonathan P. Dowling. “Quantum op-
tical metrology – the lowdown on
high-N00N states”. In: Contemporary
Physics 49.2 (2008), pp. 125–143. doi:
10.1080/00107510802091298.

[8] Bernard Yurke, Samuel L. McCall, and
John R. Klauder. “SU(2) and SU(1,1)
interferometers”. In: Physical Review A
33 (6 June 1986), pp. 4033–4054. doi:
10.1103/PhysRevA.33.4033.

[9] U. Seyfarth et al. “Wigner function for
SU(1,1)”. In: Quantum 4 (Sept. 2020),
p. 317. issn: 2521-327X. doi: 10.22331/q-
2020-09-07-317.

[10] Prasoon Gupta et al. “Optimized phase
sensing in a truncated SU(1,1) interferom-
eter”. In: Optics Express 26.1 (Jan. 2018),
pp. 391–401. doi: 10.1364/OE.26.000391.

[11] Carlton M. Caves. “Reframing SU(1,1)
Interferometry”. In: Advanced Quantum
Technologies 3.11 (2020), p. 1900138. doi:
10.1002/qute.201900138.

[12] Mathieu Manceau, Farid Khalili, and
Maria Chekhova. “Improving the phase
super-sensitivity of squeezing-assisted in-
terferometers by squeeze factor unbalanc-
ing”. In: New Journal of Physics 19.1
(Jan. 2017), p. 013014. doi: 10.1088/1367-
2630/aa53d1.

[13] Shengshuai Liu et al. “Quantum Enhance-
ment of Phase Sensitivity for the Bright-
Seeded SU(1,1) Interferometer with Direct
Intensity Detection”. In: Physical Review

Applied 10 (6 Dec. 2018), p. 064046. doi:
10.1103/PhysRevApplied.10.064046.

[14] Xiao Xiao et al. “Enhancement of Sensitiv-
ity by Initial Phase Matching in SU(1,1)
Interferometers”. In: Communications in
Theoretical Physics 71.1 (Jan. 2019),
p. 037. doi: 10.1088/0253-6102/71/1/37.

[15] Mathieu Manceau et al. “Detection Loss
Tolerant Supersensitive Phase Measure-
ment with an SU(1,1) Interferometer”.
In: Physical Review Letters 119 (22 Nov.
2017), p. 223604. doi: 10.1103/Phys-
RevLett.119.223604.

[16] Enno Giese et al. “Phase sensitivity
of gain-unbalanced nonlinear interferom-
eters”. In: Physical Review A 96 (5
Nov. 2017), p. 053863. doi: 10.1103/Phys-
RevA.96.053863.

[17] Jefferson Flórez et al. “The phase sensi-
tivity of a fully quantum three-mode non-
linear interferometer”. In: New Journal of
Physics 20.12 (Dec. 2018), p. 123022. doi:
10.1088/1367-2630/aaf3d2.

[18] William N Plick, Jonathan P Dowling,
and Girish S Agarwal. “Coherent-light-
boosted, sub-shot noise, quantum interfer-
ometry”. In: New Journal of Physics 12.8
(Aug. 2010), p. 083014. doi: 10.1088/1367-
2630/12/8/083014.

[19] Brian E. Anderson et al. “Optimal phase
measurements with bright- and vacuum-
seeded SU(1,1) interferometers”. In: Phys-
ical Review A 95 (6 June 2017), p. 063843.
doi: 10.1103/PhysRevA.95.063843.

[20] Dong Li et al. “The phase sensitivity of an
SU(1,1) interferometer with coherent and
squeezed-vacuum light”. In: New Journal
of Physics 16.7 (July 2014), p. 073020. doi:
10.1088/1367-2630/16/7/073020.

[21] Sushovit Adhikari et al. “Phase estima-
tion in an SU(1,1) interferometer with dis-
placed squeezed states”. In: OSA Contin-
uum 1.2 (Oct. 2018), pp. 438–450. doi:
10.1364/OSAC.1.000438.

[22] Li-Li Guo, Ya-Fei Yu, and Zhi-Ming Zhang.
“Improving the phase sensitivity of an
SU(1,1) interferometer with photon-added
squeezed vacuum light”. In: Optics Express

Accepted in Quantum 2021-05-26, click title to verify. Published under CC-BY 4.0. 12

https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1103/PhysRevA.55.2598
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.22331/q-2020-09-07-317
https://doi.org/10.22331/q-2020-09-07-317
https://doi.org/10.1364/OE.26.000391
https://doi.org/10.1002/qute.201900138
https://doi.org/10.1088/1367-2630/aa53d1
https://doi.org/10.1088/1367-2630/aa53d1
https://doi.org/10.1103/PhysRevApplied.10.064046
https://doi.org/10.1088/0253-6102/71/1/37
https://doi.org/10.1103/PhysRevLett.119.223604
https://doi.org/10.1103/PhysRevLett.119.223604
https://doi.org/10.1103/PhysRevA.96.053863
https://doi.org/10.1103/PhysRevA.96.053863
https://doi.org/10.1088/1367-2630/aaf3d2
https://doi.org/10.1088/1367-2630/12/8/083014
https://doi.org/10.1088/1367-2630/12/8/083014
https://doi.org/10.1103/PhysRevA.95.063843
https://doi.org/10.1088/1367-2630/16/7/073020
https://doi.org/10.1364/OSAC.1.000438


26.22 (Oct. 2018), pp. 29099–29109. doi:
10.1364/OE.26.029099.

[23] Xiaoping Ma et al. “Sub-shot-noise-limited
phase estimation via SU(1,1) interferome-
ter with thermal states”. In: Optics Express
26.14 (July 2018), pp. 18492–18504. doi:
10.1364/OE.26.018492.

[24] Jiamin Li et al. “Joint measurement of mul-
tiple noncommuting parameters”. In: Phys-
ical Review A 97 (5 May 2018), p. 052127.
doi: 10.1103/PhysRevA.97.052127.

[25] Dong Li et al. “Effects of loss on the
phase sensitivity with parity detection
in an SU(1,1) interferometer”. In: Jour-
nal of the Optical Society of America B
35.5 (May 2018), pp. 1080–1092. doi:
10.1364/JOSAB.35.001080.

[26] A. M. Marino, N. V. Corzo Trejo, and P. D.
Lett. “Effect of losses on the performance
of an SU(1,1) interferometer”. In: Physical
Review A 86 (2 Aug. 2012), p. 023844. doi:
10.1103/PhysRevA.86.023844.

[27] Jun Xin, Hailong Wang, and Jietai Jing.
“The effect of losses on the quantum-noise
cancellation in the SU(1,1) interferometer”.
In: Applied Physics Letters 109.5 (2016),
p. 051107. doi: 10.1063/1.4960585.

[28] Xiu-Ling Hu et al. “Phase estimation
for an SU(1,1) interferometer in the
presence of phase diffusion and photon
losses”. In: Physical Review A 98 (2
Aug. 2018), p. 023803. doi: 10.1103/Phys-
RevA.98.023803.

[29] P. Sharapova et al. “Schmidt modes in
the angular spectrum of bright squeezed
vacuum”. In: Physical Review A 91 (4
Apr. 2015), p. 043816. doi: 10.1103/Phys-
RevA.91.043816.

[30] Gaetano Frascella et al. “Experimental re-
construction of spatial Schmidt modes for
a wide-field SU(1,1) interferometer”. In:
Laser Physics 29.12 (Oct. 2019), p. 124013.
doi: 10.1088/1555-6611/ab4bdc.

[31] Kirill A. Kuznetsov et al. “Nonlinear
interference in the strongly nondegen-
erate regime and Schmidt mode anal-
ysis”. In: Physical Review A 101 (5
May 2020), p. 053843. doi: 10.1103/Phys-
RevA.101.053843.

[32] P. R. Sharapova et al. “Bright squeezed
vacuum in a nonlinear interferometer: Fre-
quency and temporal Schmidt-mode de-
scription”. In: Physical Review A 97 (5
May 2018), p. 053827. doi: 10.1103/Phys-
RevA.97.053827.

[33] Samuel Lemieux et al. “Engineering the
Frequency Spectrum of Bright Squeezed
Vacuum via Group Velocity Disper-
sion in an SU(1,1) Interferometer”. In:
Physical Review Letters 117 (18 Oct.
2016), p. 183601. doi: 10.1103/Phys-
RevLett.117.183601.

[34] Gil Triginer et al. “Understanding High-
Gain Twin-Beam Sources Using Cascaded
Stimulated Emission”. In: Physical Review
X 10 (3 Sept. 2020), p. 031063. doi:
10.1103/PhysRevX.10.031063.

[35] Anna V Paterova and Leonid A Krivitsky.
“Nonlinear interference in crystal superlat-
tices”. In: Light: Science & Applications 9.1
(2020), pp. 1–7. doi: 10.1038/s41377-020-
0320-1.

[36] G. Frascella et al. “Wide-field SU(1,1)
interferometer”. In: Optica 6.9 (Sept.
2019), pp. 1233–1236. doi: 10.1364/OP-
TICA.6.001233.

[37] Z. Y. Ou and Xiaoying Li. “Quantum
SU(1,1) interferometers: Basic principles
and applications”. In: APL Photonics 5.8
(2020), p. 080902. doi: 10.1063/5.0004873.

[38] Jie Su et al. “Versatile and precise quan-
tum state engineering by using nonlin-
ear interferometers”. In: Optics Express
27.15 (July 2019), pp. 20479–20492. doi:
10.1364/OE.27.020479.

[39] Joseph M. Lukens, Raphael C. Pooser, and
Nicholas A. Peters. “A broadband fiber-
optic nonlinear interferometer”. In: Applied
Physics Letters 113.9 (2018), p. 091103.
doi: 10.1063/1.5048198.

[40] Jeremy O’Brien et al. “Focus on inte-
grated quantum optics”. In: New Journal of
Physics 15.3 (Mar. 2013), p. 035016. doi:
10.1088/1367-2630/15/3/035016.

[41] S. Tanzilli et al. “On the genesis and evo-
lution of Integrated Quantum Optics”. In:
Laser & Photonics Reviews 6.1 (2012),
pp. 115–143. doi: 10.1002/lpor.201100010.

Accepted in Quantum 2021-05-26, click title to verify. Published under CC-BY 4.0. 13

https://doi.org/10.1364/OE.26.029099
https://doi.org/10.1364/OE.26.018492
https://doi.org/10.1103/PhysRevA.97.052127
https://doi.org/10.1364/JOSAB.35.001080
https://doi.org/10.1103/PhysRevA.86.023844
https://doi.org/10.1063/1.4960585
https://doi.org/10.1103/PhysRevA.98.023803
https://doi.org/10.1103/PhysRevA.98.023803
https://doi.org/10.1103/PhysRevA.91.043816
https://doi.org/10.1103/PhysRevA.91.043816
https://doi.org/10.1088/1555-6611/ab4bdc
https://doi.org/10.1103/PhysRevA.101.053843
https://doi.org/10.1103/PhysRevA.101.053843
https://doi.org/10.1103/PhysRevA.97.053827
https://doi.org/10.1103/PhysRevA.97.053827
https://doi.org/10.1103/PhysRevLett.117.183601
https://doi.org/10.1103/PhysRevLett.117.183601
https://doi.org/10.1103/PhysRevX.10.031063
https://doi.org/10.1038/s41377-020-0320-1
https://doi.org/10.1038/s41377-020-0320-1
https://doi.org/10.1364/OPTICA.6.001233
https://doi.org/10.1364/OPTICA.6.001233
https://doi.org/10.1063/5.0004873
https://doi.org/10.1364/OE.27.020479
https://doi.org/10.1063/1.5048198
https://doi.org/10.1088/1367-2630/15/3/035016
https://doi.org/10.1002/lpor.201100010


[42] Takafumi Ono et al. “Observation of
nonlinear interference on a silicon
photonic chip”. In: Optics Letters
44.5 (Mar. 2019), pp. 1277–1280. doi:
10.1364/OL.44.001277.

[43] Justin B. Spring et al. “Boson Sampling
on a Photonic Chip”. In: Science 339.6121
(2013), pp. 798–801. issn: 0036-8075. doi:
10.1126/science.1231692.

[44] Alberto Peruzzo et al. “Quantum Walks of
Correlated Photons”. In: Science 329.5998
(2010), pp. 1500–1503. issn: 0036-8075.
doi: 10.1126/science.1193515.

[45] P R Sharapova et al. “Toolbox for the de-
sign of LiNbO3-based passive and active in-
tegrated quantum circuits”. In: New Jour-
nal of Physics 19.12 (Dec. 2017), p. 123009.
doi: 10.1088/1367-2630/aa9033.

[46] DN Klyshko. “Ramsey interference in two-
photon parametric scattering”. In: Journal
of Experimental and Theoretical Physics
104 (1993), pp. 2676–2684. url: http://
www.jetp.ac.ru/cgi-bin/e/index/e/
77/2/p222?a=list.

[47] DN Klyshko. “Parametric generation of
two-photon light in anisotropic layered me-
dia”. In: Journal of Experimental and The-
oretical Physics 105 (1994), pp. 1574–1582.
url: http://www.jetp.ac.ru/cgi-bin/
e/index/e/78/6/p848?a=list.

[48] Matteo Santandrea et al. “Fabrication lim-
its of waveguides in nonlinear crystals and
their impact on quantum optics applica-
tions”. In: New Journal of Physics 21.3
(Mar. 2019), p. 033038. doi: 10.1088/1367-
2630/aaff13.

[49] Sten Helmfrid, Gunnar Arvidsson, and
Jonas Webjörn. “Influence of various im-
perfections on the conversion efficiency
of second-harmonic generation in quasi-
phase-matching lithium niobate waveg-
uides”. In: Journal of the Optical Society
of America B 10.2 (Feb. 1993), pp. 222–
229. doi: 10.1364/JOSAB.10.000222.

[50] David S. Hum and Martin M. Fejer.
“Quasi-phasematching”. In: Comptes Ren-
dus Physique 8.2 (2007). Recent advances
in crystal optics, pp. 180–198. issn: 1631-
0705. doi: 10.1016/j.crhy.2006.10.022.

A Schmidt modes calculation

The PDC process is a well-known source of broad-
band squeezed light. In order to make the squeez-
ing and broadband behaviour mathematically ex-
plicit, we firstly need to introduce the Schmidt
operators, namely a special set of annihilation
and creation operators equipped with a spectral
distribution. For doing this, we should use the
Schmidt decomposition of the JSA presented in
Eq.(2),

F (ωs, ωi, φ) =
∑
k

√
λk(φ)uk(ωs, φ)vk(ωi, φ),

(24)
where we made explicit the parametric depen-
dence of the JSA on the phase φ experienced by
the idler photon. In this framework, λk(φ) are the
Schmidt eigenvalues and uk(ωs, φ) and vk(ωi, φ)
are an orthonormal set of spectral Schmidt modes
for signal and idler photons, respectively. At
this point it is convenient to introduce the input
Schmidt operators as following:

(A†k)
in =

∫
dωsuk(ωs, φ)a†(ωs),

(B†k)
in =

∫
dωivk(ωi, φ)a†(ωi),

(25)

which describe the signal and idler photons
characterized by the spectra |uk(ωs, φ)|2 and
|vk(ωi, φ)|2, respectively. These operators fulfill
the typical bosonic commutation rules:

[Ak, A†j ] = δkj , [Ak, B†j ] = 0. (26)

Following the strategy detailed in [29], we can
define the Hamiltonian in terms of Schmidt oper-
ators and solve the Heisenberg equations in order
to find both the output Schmidt operators:

Aoutk = Aink cosh
[
G(φ)

√
λk(φ)

]
+

(B†k)
in sinh

[
G(φ)

√
λk(φ)

]
,

Bout
k = Bin

k cosh
[
G(φ)

√
λk(φ)

]
+

(A†k)
in sinh

[
G(φ)

√
λk(φ)

]
,

(27)
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and the output plane wave operators:

aout(ωs) = ain(ωs) +
∑
k

uk(ωs, φ)

+
[
Aink

(
cosh

[
G(φ)

√
λk(φ)

]
− 1

)
+(B†k)

in sinh
[
G(φ)

√
λk(φ)

] ]
,

bout(ωi) = bin(ωi) +
∑
k

vk(ωi, φ)

+
[
Bin
k

(
cosh

[
G(φ)

√
λk(φ)

]
− 1

)
+(A†k)

in sinh
[
G(φ)

√
λk(φ)

] ]
,

(28)

where G(φ) =
∫
C(φ)Γdt, C(φ) is the normal-

ization constant depending on the phase, see Eq.
2, the coupling constant Γ is proportional to the
pump power.

The output operators can be used to calculate
different quantities, for instance, the output inte-
gral mean number of signal photons is given by:

〈Ns(φ)〉 =
∑
k

sinh2
[
G(φ)

√
λk(φ)

]
. (29)

Since we only consider the signal photon observ-
ables, the index "s" will be omitted below along
the text.

Similarly, the variance of the integral number
of signal photons is given by:

〈∆2N〉 = 1
4
∑
k

sinh2
[
2G(φ)

√
λk(φ)

]
. (30)

The derivative of the mean number of photons
〈N〉 respect to the phase gives

d〈N〉
dφ

=
∑
k

sinh
[
2G(φ)

√
λk(φ)

]

×
(
dG(φ)
dφ

√
λk(φ) + G(φ)

2
√
λk(φ)

dλk(φ)
dφ

)
.

(31)

In all cases analysed in this work, the JSA
never vanishes totally due to the multimode
structure of the light. This means that both G(φ)
and the eigenvalues λk(φ) cannot reach zero, as
a result, both the mean photon number and its
variance are not fully suppressed. Therefore, by
the definition of phase sensitivity in Eq.5, the non
vanishing variance causes the presence of a peak
in the phase sensitivity plot.

It is fundamental to assert that the plotted
phase sensitivity is normalized with respect to
the SNL, which depends on the number of sig-
nal photons inside the interferometer:

〈Nin〉 =
∑
k

sinh2 [G1
√
ηk] , (32)

where ηk are the Schmidt eigenvalues correspond-
ing to the single periodically poled waveguide.
G1 =

∫
C1(Γ/2)dt, where it is taken into ac-

count that the coupling constant of a single PDC
section is twice smaller compared to the double-
PDC-section configuration; C1 is the normaliza-
tion constant corresponding to the JSA of a single
PDC section.

In order to give an analytical justification of the
trend of the normalized phase sensitivity in Fig.
7, it is more practical to split our argumentation
in two parts, distinguishing a low gain regime, in
which G(0)

√
λ1(0)� 1, from a high gain regime,

in which G(0)
√
λ1(0)� 1.

In the former case, an estimation of the photon
number in Eq.(29) and in Eq.(32) gives

〈N(φ)〉 ' G2(φ)
∑
k

λk(φ) = G2(φ), (33)

and
〈Nin〉 ' G2

1
∑
k

ηk = G2
1, (34)

respectively, whereas using the Taylor expansion
of the variance Eq.(30) we obtain

〈∆2N〉 ' G2(φ)
∑
k

λk(φ) = G2(φ). (35)

Since the SU(1,1) interferometer, which we are
dealing with, has the JSA at φ = 0 almost iden-
tical to the JSA of a single waveguide, we can
assume that C1 ≈ C(0) and λk(0) ≈ ηk. There-
fore, by calculating the derivative of the photon
number in Eq.(33) with respect to the phase, it
turns out that the normalized phase sensitivity is
described by:

〈∆φ〉
〈∆φSNL〉

≈
∣∣∣∣∣G(0)

4

(
∂G(φ)
∂φ

)−1∣∣∣∣∣ ≈ 1
2 sin(φ/2) ,

(36)
where the last step stems from the assumption
that in the low intensity regime, according to the
form of JSA Eq.(15), the gain is a modulated
function of the form G(φ) = G(0)|cos(φ/2)| (this
expression holds at 0 < φ < π). It is interesting
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to notice that the normalized phase sensitivity in
the low gain regime does not depend on the gain
anymore, which can be seen in Fig. 7.

In the high gain regime, due to the redistri-
bution of the eigenvalues [29], the contribution
of the first mode to the signal and variance will
be dominated, and we can temporarily underes-
timate the number of photons of both equations
(29) and (32) by taking into account the contri-
bution stemming from the first mode, obtaining:

〈Ns(φ)〉 ≈ sinh2
[
G(φ)

√
λ1(φ)

]
, (37)

and
〈Nin〉 ≈ sinh2 [G1

√
η1] , (38)

respectively. We underestimate the variance con-
sequently:

〈∆2N〉 ≈ 1
4 sinh2

[
2G(φ)

√
λ1(φ)

]
. (39)

By assuming again C1 ≈ C(0) and λk(0) ≈ ηk,
the gain of the process can also be expressed
as γ = G(0)

√
λ1(0) ' 2G1

√
η1. Moreover, the

shape of the JSA Eq.(15) modulated by cos(φ/2)
allows us to writeG(φ)

√
λ1(φ) ≈ γ|cos(φ/2)|. Fi-

nally, by collecting all assumptions written above,
we can estimate the normalized phase sensitivity:

∆φ
∆φSNL

≈ sinh[γ/2]
γ sin(φ/2) . (40)

If the angle φ is close to π (the point of almost
perfect destructive interference), the eigenvalues
distribution is very close to the flat distribution.
In this case, the underestimation with only the
first Schmidt mode is not correct, but one can use
the overestimation, suggesting that all Schmidt
modes have the same weights. It means that the
integral number of photons is equivalent to

〈N(φ)〉 ≈ K sinh2
[
G(φ)

√
λ1(φ)

]
, (41)

where we assume that the all K Schmidt modes
have the same contribution, K = 1/(

∑
k Λ2

k) is
the effective number of modes (the Schmidt num-
ber) and

Λk =
sinh2

[
G(φ)

√
λk(φ)

]
∑
k sinh2

[
G(φ)

√
λk(φ)

] (42)

is a set of Schmidt coefficients taking into account
the redistribution of the weights in the high gain

regime [32]. The variance would change conse-
quently:

〈∆2N〉 = K

4 sinh2
[
2G(φ)

√
λ1(φ)

]
. (43)

By modifying the mean photon number in the
SNL similarly to Eq.(41), along with all assump-
tions made above, the overestimated normalized
phase sensitivity would be identical to Eq.(40),
which in turn, with φ = π equals to Eq.(16).

B Further seeding configurations
In this appendix, we analyse different types of
seeding as well as different detection strategies
to find the optimal conditions for the best phase
sensitivity. In all cases presented below, the seed
consists of a coherent state, moreover, seeding is
performed only for the signal mode of the inter-
ferometer (the vacuum input for the idler mode),
which can be done due to the distinguishability of
photons because of their polarizations. The seed
of coherent states in specific modes can be car-
ried out experimentally by injecting a laser whose
spectral features are shaped to one of the specific
modes of the interferometer. Furthermore, since
the Schmidt modes of the interferometer depend
on the internal phase, we can suppose to tune the
spectral profile of the laser accordingly.

B.1 Direct detection: coherent state in the
first Schmidt mode
In this configuration, we utilise an intense coher-
ent state |α〉 in the first Schmidt mode of the sig-
nal photon, the input state in this case is given
by:

|ψ〉in = |α〉A1 |0〉An 6=1 |0〉Bn . (44)
To simplify calculations, we consider a coherent
state with a real α and high number of photons
|α|2 = 106. Such seeding changes the SNL ac-
cordingly:

∆φSNL =
1√

α2 cosh2[C1
√
η1] +

∑
k sinh2[C1

√
ηk]

. (45)

Analogous to the previous case, direct calcula-
tions give the following expressions for the mean
photon number:

〈Ns〉 =
∑
k

sinh2 γk + |α|2 + |α|2 sinh2 γ1, (46)
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and for the photon number variance:

〈∆2Ns〉 =
∑
k

sinh2 γk cosh2 γk

+|α|2 cosh2 γ1 cosh 2γ1.

(47)

However, as it is shown in Fig.13, for any values
of the gain this configuration does not present
supersensitivity regions. Analytically, this can be
demonstrated by checking the normalized phase
sensitivity in the asymptotic limit when α2 �∑
k sinh2 γk, namely

∆2φ

∆2φSNL
≈ (1+coth2 γ1) cosh2 [G1

√
η1]
∣∣∣∣∂γ1
∂φ

∣∣∣∣−2
.

(48)
Due to the similarity between the JSA in Eq.(15)
at φ = 0 and the JSA of a single waveguide, we
can assume λ1(0) ' η1 and G(0) ' 2G1; hence
the gain γ can be expressed as γ ' 2G1

√
η1. Fur-

thermore, we can also assume γ1 ≈ γ|cos(φ/2)|,
therefore in the range {0− π} we have

∆2φ

∆2φSNL
≈

4
(
1 + coth2[γ cos(φ/2)]

)
cosh2[γ/2]

γ2 sin2(φ/2)
.

(49)
By plotting this curve, or alternatively by calcu-
lating the minimum point with respect to φ, it
is clear that this function cannot even reach the
shot noise limit.

Figure 13: The normalized phase sensitivity on the phase
for different gains. The first Schmidt mode of the signal
photon is seeded with an intense coherent state having
|α|2 = 106 photons. The SNL is represented by a solid
black line.

B.2 Homodyne detection

In this subsection we discuss seeded interferom-
eters with the homodyne detection strategy. In
the case of homodyne detection, we must prop-
erly modify the definition of the phase sensitivity
using the homodyne operator Ĥd (not the pho-
ton number operator as before) [19] to calculate
observables. According to this modification, the
phase sensitivity is defined as:

∆φ =
∣∣∣∣ 〈∆Ĥd〉
∂〈Ĥd〉/∂φ

∣∣∣∣. (50)

The homodyne operator depends on the local os-
cillator properties, which is why it is necessary
to ensure that the output light of the SU(1,1)
interferometer and the local oscillator are spec-
trally matched. To ensure this, both the output
radiation and the local oscillator are spectrally
filtered. The spectral characteristic of the filters
will be modelled depending on the different type
of seeding used. In particular, in case 1 below,
we will consider a spectral filter selecting only
the first Schmidt mode, while in case 2 we will
consider a passband filter around the central fre-
quency of generated squeezed light. The SNL cal-
culation takes these modifications into account as
well: the mean number of photons in the SNL
corresponds to the number of signal photons gen-
erated by a single periodically poled waveguide,
averaged with respect to the input seeding state,
and then filtered to match the spectral properties
of the output squeezed light.

B.2.1 Coherent state in the first Schmidt mode

The first case we consider is an intense coher-
ent seed in the first Schmidt mode with the same
initial state as in Eq.(44). At the end of the in-
terferometer we filter the output radiation of the
signal photon, selecting the first Schmidt mode.
A local oscillator is fixed in the same frequency
range, corresponding to the first Schmidt mode.
In this case, the homodyne operator is defined as:

Ĥd = |βlo|
(
eiθaÂout1 + e−iθa

[
Âout1

]†)
, (51)

where |βlo| and θa are the amplitude and the
phase of the local oscillator (described by the co-
herent state ||βlo|eiθa〉A1). Averaging the homo-
dyne operator with respect to the input state we
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obtain:

〈Ĥd〉 = 2α|βlo| cos θa cosh γ1. (52)

The variance of the homodyne operator is given
by:

〈∆2Ĥd〉 = |βlo|2 cosh 2γ1, (53)
whereas the expression for the shot noise limit is:

∆φSNL = 1√
α2 cosh2[C1

√
η1] + sinh2[C1

√
η1]

.

(54)
The optimum phase sensitivity is reached when
θa = 0. According to our analysis, this seed-
ing case does not present any supersensitivity be-
haviour, and the phase sensitivity curves, very
similar to Fig.13 and therefore not shown, lies
entirely above the SNL. This result, obtained
through the homodyne detection, together with
the previous outcomes achieved via direct detec-
tion, suggests that a strong coherent seed in the
spectral mode does not provide any improvement
in the supersensitivity and therefore other seed-
ing strategies are recommended.

B.2.2 Coherent state in the plane-wave mode

In this section we consider an intense coherent
seed in the plane-wave mode ωp/2. The output
radiation is filtered in the same frequency. The
input state in this case is given by:

|ψ〉in =
∫
dωsδ(ωs − ωp/2)|α〉ωs |0〉ωi , (55)

where we again assume a seeding state contain-
ing one million photons. In order to prevent any
time dependence in the output, the local oscilla-
tor is also defined in a plane-wave mode at the
frequency ωp/2. The homodyne operator there-
fore takes the following expression:

Ĥd =

|βlo|
(
eiθa âout

(
ωp
2

)
+ e−iθa

[
âout

(
ωp
2

)]†)
,

(56)

where the output plane wave operators âout and[
âout

]† are defined in the Appendix.
The average value of the homodyne operator

gives:

〈Ĥd〉 = 2α|βlo| cos θa

×
(

1 +
∑
k

∣∣∣∣uk (ωp2 , φ

)∣∣∣∣2 (cosh γk − 1)
)
,

(57)

while the variance of the homodyne operator
takes the form:

〈∆2Ĥd〉 =

|βlo|2
(

1 + 2
∑
k

∣∣∣∣uk (ωp2 , φ

)∣∣∣∣2 sinh2 γk

)
,

(58)

where the integrals in the frequency domain have
already been performed.

Figure 14: The normalized phase sensitivity in relation
to the phase. The plane wave mode with the frequency
ωp/2 is seeded by the intense coherent light having
|α|2 = 106 photons. The SNL is represented by a solid
black line.

Figure 15: The minimum values of the normalized phase
sensitivity presented in Fig. 14 versus gain (red circles)
compared to the no-seeding case (black squares). The
SNL is plotted in black.
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The calculation of the shot noise limit is car-
ried out via Eq.(6), taking into account the num-
ber of photons inside the interferometer after the
frequency integration:

Nin = α2 +
∑
k

∣∣∣∣ūk (ωp2
)∣∣∣∣2 sinh2[G1

√
ηk]

+α2
[∑
k

∣∣∣∣ūk (ωp2
)∣∣∣∣2 (cosh[G1

√
ηk]− 1)

]2

+2α2∑
k

∣∣∣∣ūk (ωp2
)∣∣∣∣2 (cosh[G1

√
ηk]− 1).

(59)

According to these expressions, the phase sensi-
tivity was calculated, normalized with respect to
the SNL, optimized for θa = 0, and finally plotted
in Fig.14. The minimum values of the phase sen-
sitivity for different gains are presented in Fig.15.
This figure demonstrates that the phase sensitiv-
ity with this seeding choice also does not have
any supersensitivity regions. The reason is that
a strong seeding in the signal mode alone creates
an imbalance between the number of signal and
idler photons and destroys the signal-idler photon
correlations required for the observation of the su-
persensitivity in the highly multimode regime.
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