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We consider one-dimensional quantum walks in optical linear networks with synthetically intro-
duced disorder and tunable system parameters allowing for the engineered realization of distinct
topological phases. The option to directly monitor the walker’s probability distribution makes this
optical platform ideally suited for the experimental observation of the unique signatures of the one-
dimensional topological Anderson transition. We analytically calculate the probability distribution
describing the quantum critical walk in terms of a (time staggered) spin polarization signal and
propose a concrete experimental protocol for its measurement. Numerical simulations back the
realizability of our blueprint with current date experimental hardware.

I. INTRODUCTION

Low-dimensional disordered quantum systems can es-
cape the common fate of Anderson localization once
topology comes into play, as first witnessed at the in-
teger quantum Hall plateau transitions1,2. The advent
of topological insulators has brought a systematic un-
derstanding of topological Anderson insulators and their
phase transitions3. Critical states at Anderson local-
ization transitions typically show unusual spectral- and
wave-function statistics4, as well as anomalous diffusive
dynamics. From the single parameter scaling theory of
localization one e.g. expects a scaling 〈q2(t)〉 ∼ t2/d

of the mean square displacement at a conventional d-
dimensional localization transition5. Topological local-
ization transitions, on the other hand, follow a two-
parameter scaling and the situation is more complex6–8.
The controlled experimental study of a critical state at
the Anderson localization transition presents an intrigu-
ing challenge. It has been first accomplished within a
cold-atom realization of the quantum kicked rotor for the
three-dimensional Anderson localization transition in the
orthogonal class9. A corresponding study of a topological
localization transition requires the control over additional
internal degrees of freedom and has, to our knowledge,
not been realized so far.

The physics of the topological Anderson localization
transition is particularly intriguing in one-dimensional
(1d) systems, where disorder is exceptionally efficient
in inducing quantum localization on short length scales.
Topological quantum criticality then reflects a fight be-
tween two powerful principles: strong localization vs
the enforced change of an integer topological invariant.
Topology trumps localization and forces long range cor-
relations across the system. In practical terms, this im-
plies a divergent localization length, and finite conduc-
tion. However, the reluctance of the system to conduct
shows in an extremely (logarithmically) slow spreading of
quantum states at criticality10,11, strikingly different to
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FIG. 1. A schematic evolution of a discrete-time quantum
walk of a spin 1/2 particle over two steps in time. Alter-

nating application of coin R̂ and step T̂ operators describe
the dynamics on discrete lattice sites q ∈ Z. In step two at
position q = 0, the first interference takes place.

the diffusive dynamics conventionally observed at quan-
tum phase transitions between disordered phases. In this
paper, we connect the physics of one-dimensional topo-
logical quantum criticality to the unique opportunities
offered by quantum optics experimentation. We present
a concrete and experimentally realistic blueprint for a
tunable 1d quantum walk in which the unique signatures
of topological quantum criticality show via a (time stag-
gered) spin polarization signal.

Quantum walks12 have been implemented on various
experimental platforms, such as photons13–22, ions23,24,
atoms25–27 and nuclear magnetic resonance28. A de-
tailed introduction to experimental implementations of
quantum walks can be found in Ref.29. Quantum walks
allow for a large tunability of the system parameters
and have been used experimentally to observe Anderson
localization20,22,30, dynamical localization25 and topolog-
ical effects31–38. Quantum walk systems thus open the
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perspective of a low-dimensional system in which disorder
and nontrivial topology can be introduced in controlled
manners. Direct experimental access to the probability
distribution allows, moreover, for a full characterization
of the walker’s dynamics.

A prototypical quantum walk is depicted in Fig. 1. It
is generated by the single time-step evolution Û = R̂ T̂ ,
iteratively acting on a walker with a two dimensional
internal degree of freedom, refered to as ‘spin’ in the
following. Here T̂ translates the particle on a discrete
one-dimensional lattice. Depending on its internal spin-
state, the walker propagates to the left or right, and R̂
is a rotation in spin-space. Using linear optical elements,
discrete time quantum walks have been used to measure
probability distributions of walkers exposed to tunable
disorder and decoherence30,39. Specifically, conditions
for ballistic, Anderson-localized and classically diffusive
dynamics were prepared, and the corresponding walkers
probability distributions [see also Eq. (9)] were observed.
That is, the following scenarios apply: (i) Pσ′σ(t, q) ∼
δ(t − σq)δσσ′ for a translational invariant quantum sys-
tem; (ii) Pσ′σ(t, q) ∼ exp(−|q|/ξloc) for a disordered
quantum system; and (iii) Pσ′σ(t, q) ∼ exp(−q2/Dt) for
a disordered classical system, where ξloc and D are lo-
calization length and diffusion constant. In the photonic
implementation, the internal ‘spin’-states correspond to
horizontal, |H〉, and vertical, |V 〉, polarization direc-
tions, and disorder is controlled by local variations of
polarization plates30. Rotations that do not explore all
SU(2)-angles independently leave symmetries, which can
place the walk into one of the five nonstandard symmetry
classes hosting topologically interesting phases40–42.

In this paper, we explore a quantum walk operating at
a topological Anderson localization transition. We derive
the walker’s critical probability distribution at the topo-
logical transition and find a (time-staggered) spin polar-
ization as a smoking-gun evidence for the critical dynam-
ics. We indicate a protocol which allows for an observa-
tion of the discussed features within existing experimen-
tal platforms, and compare results of our effective field
theory approach to numerical simulations. The remain-
der of the paper is organized as follows. In Sec. II, we
introduce a quantum walk with chiral symmetry that can
be tuned to a quantum critical point separating two topo-
logically different Anderson insulators. In Sec. III, we
analyze the probability distribution of the critical walker
and propose, in Sec. IV, an experimental protocol that
allows one to study the predicted effect. We conclude in
Sec. V with a discussion and an outlook. Several techni-
cal discussions are relegated to appendices.

II. CHIRAL QUANTUM WALK

We start our discussion with a general one-dimensional
quantum walk of a spin-1/2 particle, encoded in the single
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FIG. 2. Dispersion-relation ε(p) of Floquet bands shown for
angles ϕ = 0 and θ = 0 (black line), π/8 (grey), and π/4 (red).

time-step evolution42

Û(φ, ϕ, θ) = R̂(φ, ϕ, θ)T̂ . (1)

The spin-dependent ‘shift’ operator T̂ here is diagonal in
the ŝ3-eigenbasis,

T̂ =
∑
q

(|q + 1, ↑〉〈↑, q|+ |q − 1, ↓〉〈↓, q|) , (2)

where q ∈ Z are the lattice sites with unit spacing, and
‘spin’ states {| ↑〉, | ↓〉} parametrize the walker’s two-
dimensional internal degrees of freedom, see also Fig. 1.
Local ‘coin’ rotations,

R̂ =
∑
q,σσ′

|q, σ〉Rσσ
′

q 〈q, σ′|, (3)

are conveniently parametrized by (site-dependent) Euler
angles Rq(φ, ϕ, θ) = exp( i2φqσ1) exp(iϕqσ3) exp( i2θqσ1),
where Pauli matrices σi operate in spin-space. Employ-
ing a symmetrized time-splitting, we can write

Û(φ, ϕ, θ) = Rz(
ϕ̂
2 )Rx( θ̂2 ) T̂ Rx( φ̂2 )Rz(

ϕ̂
2 ), (4)

with φ̂, ϕ̂, θ̂ being site-diagonal matrices of angles and
Ri(α̂) = exp(iα̂σi) defines a rotation along i-th direc-
tion. From Eq. (4), one readily verifies that quantum

walks subject to the constraint θ̂ = φ̂ exhibit a chiral
symmetry43,

σ2Ûσ2 = Û†. (5)

That is, the latter are members of the chiral symmetry
class AIII, which may host Z × Z topological insulating
phases for one-dimensional quantum walks41. In the fol-
lowing, we focus on walks with the chiral symmetry, as
denoted in Eq. (5).

Chiral symmetry of the time-evolution operator re-
flects in a spectrum which is symmetric around zero in
the 2π-periodic ‘Brillouin zone’ of quasi-energies ε±p =
±εp. For spatially constant rotations, Floquet eigen-
states are plane-waves and the two energy bands are de-
fined by the relation

cos(εp(θ, ϕ)) = cos(ϕ+ p) cos2( θ2 )− cos(ϕ− p) sin2( θ2 ),
(6)
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with p being the momentum of the plane wave. Finite
angles ϕ and θ shift the momentum and tune the band-
width of Bloch-bands; see Fig. 2. Specifically, linearly
dispersing bands that extend over the entire Brillouine
zone exist at values θ = 0, π, with

εp(θ, ϕ) = θ + p+ eiθϕ, (7)

and ϕ = ±π2 , with

εp(θ, ϕ) = π
2 ± sgn(ϕ)p. (8)

For any other values of the angles, the spectrum is gapped
around ε = 0 and π. Disorder can be introduced in a con-
trolled manner by randomizing angles. Assuming short
range site-to-site correlations, rotations are then charac-
terized by average angles θ̄, ϕ̄ and their deviations γθ, γϕ,
which we assume to be identical for all lattice sites. In one
dimension, even weak disorder γθ,ϕ � 1 strongly affects
the dynamics of the walker, turning its ballistic propaga-
tion into exponential Anderson-localization on the scale
of the mean free path44, which is set by the spatial scale
on which the random rotation angles fluctuate. The pres-
ence of the chiral symmetry, Eq. (5), on the other hand,
allows the quantum walker to escape the common fate of
Anderson localization. This happens when the system is
fine tuned to the quantum critical point, separating two
topologically different Anderson insulating phases, as we
discuss next.

III. CRITICAL DISTRIBUTION

To elaborate on the last mentioned point, we consider
the probability distribution,

Pσ′σ(t, q) = 〈|〈q, σ′|Û t|0, σ〉|2〉θ,ϕ, (9)

for a walker who is initially in eigenstate |σ〉 = | ←〉, | →〉
of the chiral operator σ̂2. This distribution yields the
probability of the walker to be found after t time-steps
at a distance q in eigenstate |σ′〉. Here and in the follow-
ing, 〈. . . 〉θ,ϕ denotes averages over distributions of an-
gles. Since particles conserve their (quasi-)energies, it
is convenient to Fourier transform Eq. (9) to a spectral
representation

Pσ′σ(ω, q) =

∫
dε 〈〈q, σ′|ĜRε+ω

2
|0, σ〉〈0, σ|ĜAε−ω2 |q, σ

′〉〉θ,ϕ.

(10)

Here we introduced the retarded (particle) and advanced

(hole) propagators ĜRε = [1−eiε−0Û ]−1 and ĜAε = [ĜRε ]†,
respectively.

The chiral symmetry relates particle and hole dynam-
ics for states in the vicinity of particle-hole symmetric
points ε ' 0, π in the 2π-periodic spectrum. More specif-
ically, the chiral symmetry Eq. (5) translates into the
relation,

ĜA−ε = σ2Ĝ
R
ε σ2, (11)

FIG. 3. Two-parameter flow of conductance g(L) and aver-
age topological index χ(L) for class AIII nonlinear σ-model
with bare values g(1) ∼ 1 and χ(1) = χ̄. Inset: the phase
diagram of the quantum walk. Assuming ϕ̄ 6= 0 the system
is at criticality provided θ̄ = 0 or π. Away from criticality,
the pair of topological indices (χ0, χπ) flow to either (0, 1) or
(1, 0) which defines two distinct Anderson localized topologi-
cal phases.

indicating that the dynamics of particles and holes at a
fixed energy is only related for ε ' −ε. That is, for states
in the vicinity of particle-hole symmetric points ε ' 0, π.

To account for the (breaking of) symmetry between
particle and hole propagators in different ranges of the
quasi-energy spectrum, we change to an energy represen-
tation of Eq. (9), and separate Fourier components into
two contributions8,

Pσ′σ(ω, q) ' P reg(ω, q) + P chiral
σ′σ (ω, q). (12)

Herein, the first (spin-independent) contribution results
from single-particle states, with |ε|, |ε−π| & ω, for which
energy detuning is large enough to break the chiral sym-
metry between propagators that compose the probability
distribution as P ∼ GRGA. Consequently, the probabil-
ity distribution for states breaking the chiral symmetry
is (on long time and length scales) identical to that of
conventional Anderson insulators. That is, upon Fourier
transform the first contribution is given by a static prob-
ability distribution,

P reg(t, q) ∼ θ(t)e−|q|/ξloc . (13)

By contrast, the second contribution results from states
with quasi-energies |ε|, |ε−π| . |ω|, for which both prop-
agators are related by chiral symmetry. That is,

P chiral
σ′σ (ω, q) ' |ω|〈〈q, σ|ĜRω

2
|0, σ〉〈0, σ|ĜA−ω2 |σ, q〉〉θ,ϕ

(14)
encodes the critical dynamics of the walker, and a non-
trivial time resolved behavior can be expected. We next
apply field-theory methods to identify quantum critical
points of the chiral walk and calculate the critical distri-
bution in Eq. (14).
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A. Sinai diffusion

Following standard approach to disordered sys-
tems6,45–49 we describe the physics of the critical states
around ε ' 0, π by a Ginzburg Landau type effective
theory. More specifically, we derive in Appendix A a
nonlinear σ-model action which encodes the full quan-
tum dynamics of soft diffusion modes and interference
processes which eventually drive strong Anderson local-
ization. What changes this conventional behavior in our
case is a topological contribution to the effective action.

The σ-model is parametrized by the frequency ω
(which however does not ‘flow’ in an renormalization
group sense), and two coupling constants, viz. the con-
ductance g and topological angle χ, see Eq. (A25). In a
conventional disordered system g follows a single param-
eter scaling50, which in 1d predicts a single, Anderson
insulating phase. The angle χ, on the other hand, allows
for a characterization of topologically different Anderson
insulating phases. This opens the possibility to escape
Anderson localization when fined tuned to specific, criti-
cal values, separating two topologically distinct Anderson
insulators.

The bare topological angle for the chiral quantum walk
reads (see Appendix A for details)

χ̄ε =
1

2

(
1− eiε〈sin(θ) cos(ϕ)〉θ,ϕ

)
, (15)

with ε = 0, π indicating the critical states described
by the effective action. The presence of two coupling
constants in the σ-model action — the ‘conductance’
and ‘topological angle’8,51,52 — leads to a two-parameter
flow and resulting phase-diagram shown in Fig. 38. For
generic bare values, the average topological angle flows
to the closest integer value χ = 0 and 1, characterizing
the two Anderson insulating phases realized by the chiral
quantum walk, while χ = 1/2 defines the critical fixed-
point line. For general ϕ̄, a critical line corresponds to
θ̄ = 0,±π. The same configuration of angles in the clean
limit gives rise to gapless linearly dispersing bands, as
expected from analogy to the corresponding Hamiltonian
system. For generic θ̄, on the other hand, criticality is
achieved at ϕ̄ = ±π/2. Finally, we remark that, in the
strong disorder limit where angels are randomly drawn
from the entire unit circle, γθ,ϕ = 2π, the quantum walk
is always critical. The same effective action also describes
disordered quantum wires with chiral symmetry and bare
localization length ξloc = 1/28. Criticality in the strong
disorder limit is, however, a peculiarity of the Floquet
system.

Concentrating then on the vicinity of a critical
point, we can calculate the walker’s critical distribution
Eq. (14). The rather technical calculation is detailed in
Appendix B and indicates the scaling form

P chiral
σ′σ = N (t)Fσ′σ(|q|ξ−1

t ), ξt ≡
2

π2
ln2 t, (16)

with a time-dependent normalization factorN (t) ∝ ln−5t
and the explicit form of F(x) to be given given below.53

The scaling of ξt implies anomalously retarded ‘Sinai dif-
fusion’ of critical states, characterized by a mean dis-
placement54–56

〈|q|〉 ∼ log2 t. (17)

Another feature of the critical distribution is the depen-
dence on spin orientations σσ′ = ±1 with reference to the
chiral symmetry σ2. This can be seen from the scaling
functions in the long time and distance limits, t, q � 1,

P chiral
σ′σ (t, q) ∝ 1

ln5 t

∞∑
n=1

(σσ′)(n+1)n2e−n
2|q|/ξt . (18)

Focusing on the tails |q| � ξt, one finds from Eq. (18)
the exponential profiles

F±σ,σ(x) = e−x ± 4e−4x + . . . , (19)

where the leading spin-independent contribution reminds
us of conventional Anderson insulators. The directly fol-
lowing terms indicate, however, dependence of the criti-
cal distribution on the spin orientation of the final state
±σ, with interesting implications, being discussed in the
next subsection. The full distributions [cf. Eq. (18)] are
shown in Fig. 4, and we refer the interested reader to
Appendix B for more detailed analytical expression. We
next discuss how the characteristic features of the critical
distribution, viz. (i) slowly increasing width ξt in time
and (ii) dependence on spin-orientation with respect to
the basis of the chiral symmetry operator, can be ob-
served in experiments.

B. “Time-staggered” spin polarization

Sinai diffusion has previously been predicted for dis-
ordered one-dimensional systems with particle-hole sym-
metry10,11, and our above result for a system with chi-
ral symmetry indicates that it is a universal dynamical
feature at one-dimensional topological Anderson localiza-
tion transitions. Arguably, observation of the weak loga-
rithmic time-dependence presents an experimentally in-
triguing challenge57. Recalling, moreover, the contribu-
tion from non-critical states to the total probability dis-
tribution implies that Sinai diffusion is generally masked
by conventionally Anderson localization. Complicating
this matter even further, the number of critical states
resolved in time t reduces as |ω| ∼ 1/t. This gener-
ates additional time dependencies in the distributions of
non-critical and critical states, as summarized in the nor-
malization N (t) of Eq. (16). The optical linear network
realization of a quantum walk discussed in the introduc-
tion, on the other hand, allows for a direct observation of
spin-resolved probability distributions. This opens an in-
teresting opportunity to observe the second feature, i.e.,
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FIG. 4. Walker’s critical probability distribution P chiral
σ′σ (t, q),

Eq. (18), for t = 10. Spin-configurations (σ′, σ) of final and
initial states are aligned (→,→) (light red) and anti-aligned
(←,→) (dark red), and distributions are normalized by the
average return probability per spin. Inset: Spin polarization
∆P (t, q) (peak at origin is not fully shown).

the peculiar spin-dependence of the critical walk. Specif-
ically, this suggests to measure the difference

∆P (t, q) ≡ P chiral
→→ (t, q)− P chiral

←→ (t, q), (20)

which only depends on the critical contribution to the
total probability. A finite spin polarization of the critical
walker may be viewed as a precursor of spin polarized
boundary states emerging in the topologically non trivial
phase58,5960.

The q-dependence of the difference ∆P (t, q) is shown
in the inset of Fig. 4. The corresponding long time prob-
ability distributions for non-critical states and conven-
tional Anderson insulators (with spin orbit interaction)
do not keep the memory of the initial spin-configuration.
The observation of ∆P (t, q) would thus provide clear ev-
idence for the critical walk at an Anderson localization
transition.

Further smoking-gun evidence for the critical distribu-
tion is then obtained from an additional symmetry of the
Floquet operator, not discussed so far. The discrete lat-
tice structure motivates the introduction of the sublattice
operator

Ŝ ≡
∑
q

|q〉(−1)q〈q|, (21)

anti-commuting with the Floquet operator Û . From
Eq. (21), one can construct a chiral-sublattice operator

Ĉsl ≡ σ2 ⊗ Ŝ, (22)

satisfying Ĉsl iÛ Ĉsl = (iÛ)†, and consequently resulting
in

ĜAε0−ε = Ĉsl ĜRε0+ε Ĉsl, (23)

whenever ε0 = ±π2 . That is, Ĉsl is an additional chiral
symmetry that applies to critical states ε ' ±π2 . This

symmmetry is also visible in the density of states as we
show in Appendix C. Interestingly, Ĉsl has different im-
plications for time evolution when extending over an even
or odd number of time steps t. We show in Appendix D
that, for critical states induced by the chiral-sublattice
symmetry Ĉsl, the spin-polarization alternates in between
time-steps; that is

∆P (t, q) = (−1)t|∆P (t, q)| (24)

holds true. The two main obervations leading to Eq. (24)
are the following (for a more rigorous explanation, see
Appendix D). (i) The Floquet operator induces transi-
tions between subspaces of opposite site-parity. That
is, walkers positioned at an even site propagate in the
following time step to an odd site, and vice versa. (ii)

Eigenstates of Ĉsl have alternating spin-polarization on
even and odd sites; e.g., |q,→〉 are eigenstates of Ĉsl with
eigenvalues (−1)q, and analogously for |q,←〉. Combin-
ing both observation, we notice that walkers propagating
for an even number of time steps have spins aligned if
their initial and final states are eigenstates of Ĉsl to the
same eigenvalue. (The same applies for the chiral oper-
ator σ2.) In contrast, for an odd number of time steps,
the walker has spins anti-aligned if initial and final states
are eigenstates of Ĉsl to the same eigenvalue. This dif-
ference simply follows from the observation that, for an
odd number of time steps, the walk starts and ends in
opposite parity sectors. Finally, we also remark that the
probability Pσ′σ has to be read as the transition within
(σ′ = σ) or between (σ′ = −σ) eigenspaces of the chiral
operator. Combining the above, it follows that for odd
numbers of time steps spin polarization reverses its sign.
We thus conclude that, for critical states induced by the
chiral-sublattice symmetry Ĉsl, the spin-polarization al-
ternates in between time steps, as indicated in Eq. (24).

IV. EXPERIMENTAL PROPOSAL

We now devise an experimental protocol which allows
us to observe the discussed characteristic features of the
quantum critical walk.

A. Experimental protocols

Quantum walks are typically initialised at a localised
position and thus involve eigenmodes from the entire
quasi-energy domain. The experimental challenge then
is to restrict the dynamics to states that approximately
preserve chiral symmetry. We suggest to prepare a single
photon in a coherent superposition described by

|ψp0M 〉 =
1√

M + 1

∑
|q|≤M/2

|(2q)〉 ⊗ | →〉 e2iqp0 , (25)

occupying (M+1) even lattice sites, where M � 1 can be
used to enhance the population of eigenstates at energy



6

εp0 . Alternatively, one can make use of the equivalence of
coherent light and a single quantum particle when prop-
agating in a linear optical network and directly apply a
train of coherent laser pulses. With |ψp0M 〉 as the delo-
calised initial state, time dependence of the localization
length ξt cannot be captured, but the spatially integrated
spin-polarization ∆P (t) can serve as a key measure for
critical phases. Specifically, we define the latter as

∆P (t) ≡
∑
q

∆Pψ(t, q), (26)

where ∆Pψ(t, q) ≡ P→ψ(t, q) − P←ψ(t, q) and the spin-
dependent local probabilities are

Pσψ(t, q) ≡ 〈|〈q, σ|Û t|ψp0M 〉|
2〉θ,ϕ. (27)

Figures 5 and 6 show our numerical simulations for
the spin polarization ∆P (t) using the initial state from
Eq. (25) for M = 102. We here did not assume peri-
odic boundary conditions, i.e. the signal could propa-
gate without restrictions to the left and right. In these
plots, light red histograms simulate the critical walk at
the topological Anderson localization transition, corre-
sponding to critical energies ε ' 0 (Fig. 5) and ε ' π/2
(Fig. 6), respectively. It can be clearly seen that a finite
(spin-staggered) polarization is maintained up to over
t = 40 time-steps, which is in the reach of current ex-
periments, indeed61–63. By contrast, the dark red curve
is a simulation of the quantum walk in a conventional
Anderson insulating phase. In this case, the spin polar-
ization of the initial state |ψp0M 〉 quickly scrambles and
decays. In all simulations static uncorrelated angles θq
and ϕq were randomly drawn from intervals (θ̄− δ, θ̄+ δ)
and (ϕ̄− δ, ϕ̄+ δ) of size 2δ = π/4 with θ̄ and ϕ̄ referring
to their mean values, and we performed ensemble average
over 5 · 103 realizations. Overall, we find clear evidence
of the discussed features in different variants of the sug-
gested protocol, starting at a number of t ∼ O(10) time
steps. As we have also checked, the results demonstrated
in Figs. 5 and 6 remain qualitatively unchanged provided
only one angle, ϕq, is random but θq = θ̄ doesn’t fluc-
tuate, which potentially is easier to realize in practice as
discussed in the next subsection.

B. Experimental setup

A schematic drawing of such quantum critical walk is
shown in Fig. 7. Pulses with a fixed phase relation are
entering neighbouring input modes of the network. Over
the course of the evolution, they undergo polarisation ro-
tations with particular angles (indicated by the different
colours of vertices) and a polarisation dependent rout-
ing. Finally, the detectors resolve internal (i.e., polariza-
tion) as well as external degree of freedom for extract-
ing spin-resolved probability distributions. Ensemble av-
erages over a few thousand realisations of disorder are
necessary since a single realisation only shows very little

FIG. 5. Spin-polarization ∆P (t) as a function of time steps t
for the initial states |ψ0

M 〉 with M = 102 and different choices
of mean angles (θ̄, ϕ̄). ∆P (t) remains finite for a large num-
ber, t ∼ O(102), of time steps (light red) if the walker probes
critical states ε ' 0 corresponding to (θ̄, ϕ̄) = (0, 0) (cf. a
spectral decomposition of the initial state as shown in the in-
set, with an = |〈εn|ψ0

M 〉|2). On other hand, ∆P (t) is scram-
bled (dark red) if non-critical states at (θ̄, ϕ̄) = (π/2, 0) are
probed.

FIG. 6. The spin-polarization ∆P (t) shows the predicted
time-staggered behavior with a long-lived finite amplitude for

the initial state |ψπ/2M 〉 with M = 102 which is chosen to filter
critical energies ε ' ±π

2
related to the chiral-sublattice sym-

metry Ĉsl. The criticality implies (θ̄, ϕ̄) = (0, 0) (light red).
Similar to Fig. 5, ∆P (t) is scrambled when non-critical states
at (θ̄, ϕ̄) = (π/2, 0) are probed (dark red).

signatures of the critical states because of the impact of
all the non-critical states. Only through this averaging
procedure, the staggering behaviour of the critical states
becomes visible and can be reliably extracted.

In addition to the precise control of all local coin rota-
tions and the easy reconfigurability of the experiment to
programme the high number of realisations, the gener-
ation of the delocalized input state is one of the main
experimental challenges. When considering a spatial
implementation of the quantum walk network16,64,65, a
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spatial-multiplexing techniques, as in66, can be adopted
to produce the input state to be fed into the network
ports. Analogously, time-multiplexing networks17,67 can
be adapted in the (temporal) position spacing to be di-
rectly compatible with the pulse train produced by a co-
herent cavity laser source. For the advanced control of
the phase between the pulses, we envision the usage of di-
rectly modulated light source68. Alternatively, an exter-
nal time-multiplexing loop, as suggested for driven quan-
tum walks in69 and which controls timings and phases of
the initial pulse train, can be connected to the setup.
Standard optical waveplates take care of the desired cir-
cular input polarization resulting in the state |ψp0M 〉—i.e.,
a state in the form of Eq. (25).

The non-random rotations Rx(θ̄/2) and the random
rotation Rz(ϕ̄q/2), forming the coin operator, are imple-
mented by (spatially varying) half (HWP) and quarter
waveplates (QWPs), being positioned independently at
each node of the network. In time-multiplexing networks,
fast switching electro-optic modulators can be utilized to
introduce the random phases ϕq

18,30 in a controlled fash-
ion. Since the evolution in the network typically takes
place in horizontal and vertical polarisation, the mea-
surement basis has to be rotated again to circular states,
such as by using QWPs at 45◦ angle in front of the detec-
tors. Crucially, to extract the spin-polarization, ∆P (t),
both polarization modes must be measured separately
for every step. In Appendix E, we provide estimates for
time and spacial scales which validate a feasibility of our
proposal within existing experimental techniques.

V. DISCUSSION

We have studied the one-dimensional quantum walk of
a spin-1/2 particle with chiral symmetry and tunable dis-
order. The quantum walk allows to realize topologically
different Anderson insulating phases, and can be tuned
to a quantum critical point separating two such phases.
Building on a low energy effective field theory, we have
derived the walker’s phase-diagram as a function of the
average values of the coin operators rotation angles and
their variances. We found that in the Floquet system
fully unitary disorder always realizes the critical point.

The critical dynamics reflects the fight between strong
localization in a 1d system on the scale of the mean free
path, and the formation of a nontrivial topological in-
variant which forces long range correlation through the
system. We calculated the critical probability distribu-
tion of the walker, and verified that the powerful, op-
posing strong localization in 1d manifests in extremely
slow critical dynamics. That is, in Sinai diffusion as pre-
viously also found for quasi one-dimensional disordered
topological superconductors11. We identified a (time-
staggered) spin polarization as a promissing observable
signature witnessing the quantum critical correlations.
More specifically, we noticed that the walker’s critical
distribution keeps memory of the initial spin configura-

FIG. 7. A prototype of a linear optical network to real-
ize a quantum critical walk discussed in details in the main
text. A train of M + 1 coherent pulses with a fixed relative
phase difference, 2p0, between adjacent pulses enters neigh-
bouring ports of the network. Each vertex illustrated the
coupling of two spatial modes and is implemented by a se-
ries of waveplates and a polarizing beam splitters, realising
the operators according to Eq. (4). The different colors of
the vertices denote the (static) randomness in the phase φq.
Eventually, the distribution for each disorder realization is
measured polarization-resolved in the circular basis.

tion, when prepared in an eigenstate of the chiral oper-
ator. Moreover, we noted that the combination of chiral
hopping on a discrete lattice and the chiral symmetry
leads to a second, ‘chiral lattice symmetry’. The spin-
polarization then becomes staggered in time, when criti-
cal states protected by this second symmetry are probed.
The underlying mechanism suggests that, quite generally,
in systems with chiral hopping on a discrete lattice one
may expect time-staggering of observables which are sen-
stitive to the eigenvalues of the chiral symmetry operator.

Taking advantage of the versatile opportunities offered
by optics, we have proposed a protocol that should allow
for the observation of the spin polarization within ex-
isting experimental set up. One experimental challenge
is to minimize contributions from uncritical states that
suffer from conventional Anderson localization and which
may mask the spin polarization. We proposed to filter
critical states in the quasi-energy spectrum by preparing
the walker initially in a spatially extended state. We con-
firmed the viability of our proposal by numerically simu-
lations of the protocol for experimentally realistic system
parameters, and verfied a strong suppression of the spin
polarization by either activating uncritical states, break-
ing chiral symmetry or introducing dephasing. For an
experimental platform we e.g. indicate an optical linear
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network similar to that used in Ref.30. The preparation
of an extended initial state with a stable fixed phase rela-
tion may still be challenging. We are, however, optimistic
that some variant of the protocol is in experimental reach
in one of the discussed platforms. The experimental ob-
servation of the time staggered spin polarization would
provide intriguing evidence for the quantum critical dy-
namics manifesting as a competition of strong localiza-
tion and nontrivial topology in disordered quantum sys-
tems.
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Appendix A: Effective field theory

In this section, we discuss how the evaluation of
the probability distributions Pσ′σ(t, q) at large distance
scales q � 1 can be brought in the framework of the ef-
fective SUSY field theory, as discussed in the main text.
We start by introducing a fictitious local gauge transfor-
mation of the basis, defined by the unitary operator

Ĝψ =

N−1∑
q=0

|q, σ〉eiψq 〈q, σ|, (A1)

with ψq = qφ0 +ψ0. Here φ0 and ψ0 are some constants;
the phase ψq is a linear ramp; and, to comply with the pe-
riodic boundary conditions, we require that φ0 = 2πn/N

with n ∈ Z. Then, by definition, Ĝψ|q, σ〉 = |q, σ〉eiψq
holds true, and this enables one to represent Eq. (4) in
the equivalent form

Pσ′σ(t, q) = 〈|〈q, σ′|G†ψÛ
tGψ|0, σ〉|2〉θ,ϕ. (A2)

This is only nominally ψ-dependent, and the usefulness
of such artificial representation is going to be evident
momentarily. As one can see, the operator Ĝψ commutes

with the (local) coin operator R̂. On the other hand,

Ĝ†ψT̂ Ĝψ = eiφ0σ3 T̂ applies. With this observation, we
can write the probability distribution as

Pσ′σ(t, q) = 〈|〈q, σ′|[Ûφ0 ]t|0, σ〉|2〉θ,ϕ, (A3)

where Ûφ0
= ei

ϕ̂
2 σ3ei

θ̂
2σ1eiφ0σ3 T̂ e

θ̂
2σ1ei

ϕ̂
2 σ3 , (A4)

and average the latter over the auxiliary angle φ0.

For that, let us consider the (disorder specific) SUSY
action

S0[ψ̄, ψ] =

∫
dq′ ψ̄q′(1− ei

ω
2−0Ûφ0)ψq′ . (A5)

Here the fields ψ̄q = {ψ̄α,σq } are four-component su-
pervectors, consisting of (anti-)commuting components
α = (f)b and carrying spin index σ = ±. The latter de-
note the eigenvalue of a spin operator ŝi, which we here
keep rather general, i.e. i = 1, 2, 3, although our focus
was on the chiral operator i = 2 in the main text. The
notation

∫
dq above is symbolic in the sense that opera-

tor Ûφ0 in fact maps the spinor ψq onto ψq±1. On taking

into account the chiral symmetry, ĜA−ε = σ2G
R
ε σ2, the

probability in Eq. (14) can be then obtained via a Gaus-
sian functional average

P chiral
σ′σ (ω, q) (A6)

=|ω|
〈∫
D(ψ̄, ψ)ψbσ′

q ψ̄bσ
0 [σ2ψ

f
0]σ[ψ̄f

qσ2]σ
′
e−S0[ψ̄,ψ]

〉
θ,ϕ

(here we used (1 − eiω2−0Ûφ0
) ≡ [GRω

2
]−1). To facilitate

the subsequent derivation, it is advantageous to augment
the action by a source term,

SJ [ψ̄, ψ] = S0[ψ̄, ψ]−
∫
dq′ ψ̄q′(jq′σ2)ψq′ . (A7)

Here the current jq′ = αδq′0π
bf ⊗ πσi + βδq′qπ

fb ⊗ πσ
′

i

involves projection matrices in spin- and graded-space,
πσi = 1

2 (1 + σσi), π
bf = ( 0 1

0 0 ), πfb = ( 0 0
1 0 ), and affords a

calculation of the probability distribution according to

P chiral
σ′σ (ω, q) = |ω|〈∂2

αβZJ〉φ,ϕ|α=β=0, (A8)

where ZJ is a partition sum of the action SJ [ψ̄, ψ]. This
identity can be checked by a straightforward computation
which invokes the Wick’s theorem for the Gaussian action
S0.

The probability in Eq. (A6) is φ0–independent by con-
struction. Thus, one can average the generating func-
tion over all equivalent gauge configurations, 〈ZJ〉φ0 =∫ 2π

0
dφ0

2π ZJ . This integral can be done via the color-flavor

transformation70 by trading the ‘microscopic’ degrees of
freedom ψ̄q, ψq for bi-local matrix fields Z̄qq′ , Zqq′ , repre-
senting the Goldstone, viz. diffusion modes, of the disor-
dered single-particle system. To see its working principle,
let us decompose the Floquet evolution operator as

Uφ0
= V1(θ, ϕ)T+e

iφ0σ3T−V2(θ, ϕ), (A9)

where partial ‘coin’ rotations are V1(ϕ, θ) = ei
ϕq
2 σ3ei

θq
2 σ1

and V2(ϕ, θ) = ei
θq
2 σ1ei

ϕq
2 σ3 , while Tσ = Tπσ3 + π−σ3 are

‘shift’ operators describing individual hopping of the spin
up and down particle to the left and right, respectively.
If one further introduces auxiliary spinors

(ψT1 , ψ
T
2 ) =ψ̄ei

ω
2 V1(θ, ϕ)T+,

(ψ′2, ψ
′
1)T =T−V2(θ, ϕ)ψ,

(A10)
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where the two component structure refers to the spin
subspace, then the free action S0 can be cast into the
equivalent form

S0[ψ, ψ̄]

=

∫
dq
(
ψ̄q ψq − ψT1,qeiφ0ψ′2,q − ψT2,qe−iφ0ψ′1,q

)
.

(A11)

At the heart of the color-flavor transformation lies the
identity70,71∫ 2π

0

dφ0

2π
e
∑
q (ψT1,qe

iφ0ψ′2,q+ψ
T
2,qe
−iφ0ψ′1,q) (A12)

=

∫
dZdZ̄ sdet(1− Z̄Z) e

∑
qq′ (ψ

T
1,qZqq′ψ

′
1,q′+ψ

T
2,qZ̄qq′ψ

′
2,q′),

and ‘sdet’ referes to the graded determinant. Here Z̄ =
{Z̄αα′} and Z = {Zαα′} are the (graded) matrix-fields
mentioned above, with components α, α′ ∈ {b, f}, Z̄bb =
−[Zbb]† and Z̄ff = [Zff ]† to guarantee convergence of
Eq. (A12), and the additional matrix structure of Z is in

spin-space. The anti-commuting blocks, Zαα
′

and Z̄αα
′

with α 6= α′ are independent varibales. On applying this
identity to the partition sum 〈ZJ〉φ0

and then integrating
over fields (ψ̄q, ψq), we can reduce the former to the path
integral over collective matrix fields (Z̄, Z) with an action

S[Z̄, Z] =− str ln(1− Z̄Z) (A13)

+ str ln
(
1− eiω2 V1T+

(
0 Z
Z̄ 0

)
T−V2 − jσ2

)
.

Recalling the chiral symmetry, σ2T−V2σ2 = (T+)†V †1 ,
one identifies two Goldstone modes of this action, Z =
−Z̄, whenever ω → 0 or 2π are satisfied (this corresponds
to particle/hole energies ±ε being close to 0 or ±π, re-
spectively). Indeed, if Z = −Z̄ are constant in space and
j = 0, then action (A13) vanishes identically. Physically,

the field Zαα
′

qq′ ∼ ψαq ψ̄α
′

q′ describes a pairwise propagation
of a retarded and an advanced single-particle amplitude
at a slight (mod 2π) difference in frequency ω. At long
spatial scales, off-diagonal components (with q 6= q′) re-
lax quickly due to accumulation of random phases, and
Goldstone modes assume the form Zqq′ = Zqδqq′ . Assum-
ing Zq to vary slowly in space, we further expand (A13)
in small spatial gradients and frequency.

a. Topological and 2nd order gradient terms

Let us first discuss terms with spatial derivatives and
set j = ω = 0 — this corresponds to the 1st Goldstone
mode — and we comment on the 2nd one (with ω → 2π)
in the end of this subsection. By defining Z = (1−iZσ2),
one can rewrite the action (A13) as

S[Z] = −str ln(Z) + str ln(Z + δZ) (A14)

with

δZ = −V1T+[Z, T †+]V †1 iσ2. (A15)

To second order,

S[Z] ' Str
(
Z−1δZ

)
− 1

2Str
(
Z−1δZZ−1δZ

)
+ . . .

= S(1)[Z] + S(2)[Z] + . . . , (A16)

while 〈q|[T+[Z, T †+]|q〉 = (Z ′q+
1
2Z
′′
q )P+ . . . . The topologi-

cal and so-called Gade terms originate from the 1st-order
terms in these series. Using that Z−1 = (1 + iσ2Z)/(1 +
Z2) and evaluating traces in the spin subspace, one ar-
rives at

〈S(1)
1 〉θ,φ = χ̄0

∫
dq str

(
g−1∂qg

)
−
∫
dq ∂q str ln(1 + g)

≡ Stop + Sr. (A17)

Here

χ̄0 =
1

2
(1− 〈sin θq cosϕq〉θ,φ), (A18)

and we introduced g = (1 + iZ)/(1 − iZ). Geometri-
cally, the unconstrained pair (Z̄, Z) defines a set of stere-
ographic coordinates parametrizing a two-dimensional
sphere in the ‘fermionic’ ff-sector, respectively, hyper-
boloid in the ‘bosonic’ bb-sector. This is readily verified
recalling that Z̄ff/bb = ±[Zff/bb]∗ and stereographic co-
ordinates

(x1, x2, x3) =
1

1± z̄z
(±2Rez,∓2Im(z), 1∓ z̄z) (A19)

for the two-sphere/hyperboloid, respectively. The
Goldstone-mode restriction Z̄ = −Z defines one-
dimensional submanifolds which result from their inter-
section with two-dimensional planes, viz. a circle, respec-
tively, hyperbola. The latter identifies g ∈ Gl(1|1) as a
supersymmetric group manifold.

For a system with periodic boundary conditions we can
omit the 2nd (residual) term Sr and keep only the 1st
(topological) one. In fact, both terms are full derivatives
since str(g−1∂qg) = ∂q ln det(g). However, Stop is non-
trivial. Consider a configuration g =

(
ex 0
0 1

)
bf

, where x is
a compact fermion angle. Assuming periodic boundary
conditions, mappings xq : S1 → S1 may have windings,
i.e. xL = x0 + 2πW , where W ∈ Z. Then action Stop on
such configuration becomes non-zero, Stop = 2iπnχ. For
the residual term one finds

Sr =

∫ 2πn

0

ieix

1 + eix
dx = n

∮
|w|=1

dw

(1 + w)
. (A20)

If one regularizes this integral by slightly shifting the pole
w = 1 outside the unit circle |w| = 1, then Sr vanishes.

The Gade term is obtained if one keeps the 2nd order
cumulant expansion when averaging over disorder,

SG[g] = −1

2
c

∫
dq str2(g−1∂qg), (A21)

where c = 〈〈χ2(θ, ϕ)〉〉 = 〈χ2(θ, ϕ)〉θ,φ − χ̄2. This term
is exactly zero at criticality (where χ = 1

2 and does not
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fluctuate), and is known to give inessential modifications
away from it72.

Since in this paper we are interested in critical quan-
tum walks only, we can derive the diffusive action S0[g]
by setting V1 = V2 = 11 (this corresponds to θ =
0, π). The latter simplifies the variation, δZ = −(Z ′q +
1
2Z
′′
q )P+iσ2 . . . , and action S0[g] originates from two

pieces. The 1st piece is

S(2)[Z] = −1

2
str
(
(1 + Z2)−1ZZ ′

)2
, (A22)

while the 2nd piece stems from the 2nd order gradient
term (∝ Z ′′) in S(1)[Z]. It evaluates to

S
(1)
2 [Z] =

1

2
str
(
(1 + Z2)−1ZZ ′′

)
. (A23)

By adding these two contributions and integrating by
parts one finds the diffusive action of the class AIII σ-
model

S0[g] = −1

2
str

(
1

1 + Z2
Z ′
)2

= −1

8

∫
dq str(∂qg

−1∂qg).

(A24)
Let us now comment on the 2nd Goldstone mode with

ω → 2π. If we change Z → −Z in the prototype ac-
tion (A13), it is reduced to the one with the 1st Gold-
stone (ω → 0) and at the same time g → g−1. The latter
does not change S0[g], but transforms the topological an-
gle, χ̄0 → χ̄π = 1− χ̄0, in the action (A17). At criticality
both Goldstone modes are described by the same action
with χ̄ = 1/2.

To summarize, using supersymmetric techniques for
disordered systems49 and the colour-flavour transforma-
tion70,71, we arrive at the effective action, Sε = S0 +Sεtop,
where

S0 =
1

2

∫
dq
[
−g0 str

(
∂qg
−1∂qg

)
+ iω str(g + g−1)

]
,

Sεtop = χ̄ε
∫
dq str(g−1∂qg). (A25)

Here g denotes a group-valued matrix field that describes
the critical fluctuations in the system, g0 = 1/4 is the
‘bare ’conductance, and

χ̄ε =
1

2

(
1− eiε〈sin(θ) cos(ϕ)〉θ,ϕ

)
(A26)

is the bare topological angle with ε = 0, π indicating the
critical states described by the effective action. Its is also
worth mentioning here that the action Sε is identical to
the one describing disordered quantum wires of a sym-
metry class AIII8.

1. Sources

Finally let us turn to source contributions SJ to the
action. Relevant contributions result from an expansion

of the action (A13) to linear order in j,

SJ = −str
(
jσ2Z−1

)
= −α

[
iZ0 + σδi2
1 + Z0Z0

]fb

− β
[
iZq + σ′δi2
1 + ZqZq

]bf

, (A27)

or

SJ [g] = −

{
α
4

[
g0 − g−1

0

]fb
+ β

4

[
gq − g−1

q

]bf
, i = 1, 3

σα
2 [gσ0 ]

fb
+ σ′β

2 [gσ
′

q ]bf , i = 2,

(A28)
resulting in

P chiral
σ′σ =

∑
σ,σ′=±

σσ′

16 |ω| 〈〈[g
σ
0 ]fb[gσ

′

q ]bf〉〉, i = 1, 3,

(A29)

P chiral
σ′σ = σσ′

4 |ω|〈〈[g
σ
0 ]fb[gσ

′

q ]bf〉〉, i = 2, (A30)

We evaluate these propagators in the next section.

Appendix B: Transfer matrix method

When evaluating the probability distributions (A29)
and (A30), the non-perturbative nature of Anderson lo-
calization requires the functional integration over the en-
tire group-manifold, which usually is a highly compli-
cated task. We are here, however, in a better situation
since powerful alternative non-perturbative methods are
available for the one-dimensional σ-model49,73. The lat-
ter is based on the interpretation of the action S0[g] as
the action of a quantum mechanical particle with coor-
dinate g moving in the potential V (g) = η str(g + g−1)
where η = −iω. Changing then from the path-integral-
to the Schrödinger-description, one expresses the prob-
ability distribution in a spectral decomposition with re-
spect to the corresponding Hamilton-operator

Ĥ = ∆g + V (g) (B1)

where ∆g = −J−1∂iG
ijJ∂j is the Beltrami-Laplace op-

erator on the AIII-manifold, with metric tensor Gij and
Jacobian J =

√
sdetG.

In what follows we sketch the details of such program
at criticality when χ̄ = 1/2 and derive a propagator of
the quantum Sinai diffusion. We start by parameterizing
the field g in terms of 4 coordinates z = (x, y, ξ̄, ξ) such
that

g = U
(
ex 0
0 eiy

)
bf

U−1, U = exp

(
0 ξ
ξ̄ 0

)
bf

(B2)

with x, y ∈ R being commutative while ξ̄, ξ being Grass-
mann anti-commutative fields, which results in the fol-
lowing metric

dl2 = −str(dgdg−1) = Gijdz
idzj (B3)

= dx2 + dy2 + 8 sinh2(x−iy2 )dξ̄dξ (B4)
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on the GL(1|1) manifold. The Eq. (B4) above defines
non-zero elements of the tensor Gij . With the Jaco-

bian J(z) = 1
4 sinh−2(x−iy2 ) and the vector potential

A = χ̄(i, 1, 0, 0) this metric defines the transfer matrix
Hamiltonian

H = −J−1(z)(∂µ − iAµ)GµνJ(z)(∂ν − iAν) + V (z),
(B5)

where V (x, y) = η(coshx− cos y) is the potential energy
due to frequency term in the action and η = −iω. Then
the Sutherland transformation,

H = eχ̄(x−iy)J1/2HJ−1/2e−χ̄(x−iy), (B6)

complemented by the ’gauge’ transform eliminating the
vector potential brings the Hamiltonian to a simpler form

Ĥ = −∂2
x − ∂2

y −
1

2
sinh−2

(
x−iy

2

)
∂ξ̄∂ξ + V (x, y). (B7)

The ground state |0〉 ≡ Φ0(x, y) of Ĥ — it obeys Ĥ|0〉 =
0 due to supersymmetry — depends only on bosonic an-
gles (x, y) and can be approximated by

Φ0(x, y) = − coth

(
x− iy

2

)
K0

(√
2ηe|x|/2

)
/ln η.

(B8)

If η � 1 then the latter correctly interpolates between
the two analytically known expressions for the ground
state |0〉 in the limit x ∼ 1 and |x| � 1, resp.71. The

excited states |k〉 ≡ Φk(z) of Ĥ with energies Ek > 0 can
be labeled by a set of quantum numbers k = (n, l, λ̄, λ),
where n and l are integers and λ̄, λ are Grassmanns.
Specifically,

Φk(z) = Rk(x, y)× eξ̄λ+ξλ̄ (B9)

can be split into radial and angular parts where Rk(x, y)
satisfies to the radial Schrödinger equation(

−∂2
x − ∂2

y + V (x, y)− 1

2
sinh−2

(
x−iy

2

)
λ̄λ

)
RkΦk

= EkRk. (B10)

Since λ̄λ is the nilpotent of the Grassmann algebra, the
spectrum and eigenstates of the above radial equation
should have the following form: Ek = εn,l + λ̄λ ε′n,l and

Rk(x, y) = Rn,l(x, y) + λ̄λR′n,l(x, y), (B11)

where n = 1, 2, . . . , and l ∈ Z are radial quantum num-
bers. It turns out (see Sec.B 0 b below) that only the 0th
order terms in bilinear λ̄λ are required to evaluate the
propagator P chiral

σ′σ (η, q) of the quantum Sinai diffusion.
We proceed by constructing an asymptotic form of the
radial wave function Rn,l(x, y) at η � 1 (or t� 1) in the
next section and then find Pσ′σ in Sec.B 0 b.

a. Radial wave function

We now concentrate on the spectrum εn,l and eigen-
states Rn,l(x, y) of the 0th order Hamiltonian

Ĥ0 = −∂2
x − ∂2

y + η(coshx− cos y). (B12)

It will be seen in Sec.B 0 b that in the limit η � 1 which
we are going to explore essential x’s satisfy ηe|x| ∼ 1
and hence cos y term in Ĥ0 can be neglected. We thus
approximate Rn,l(x, y) ≈ Rn(x)eily, which leads to εn,l =
εn + l2 together with a simple radial equation

[−∂2
x + η coshx]Rn(x) = εnRn(x). (B13)

To solve it we introduce momenta kn =
√
εn and divide

the x-axis in three intervals: (I) ’small’ angles with |x| <
1; (II) ’intermediate’ ones, such that 1 < |x| < ln(1/η)
and (III) ’large’ angles, where |x| > ln(1/η). In the fol-
lowing, it will be sufficient to consider the domain x > 0
since the potential coshx is symmetric. In the intervals
II & III one can approximate (B13) by[

−∂2
x + 1

2ηe
x
]
Rn(x) = k2

nRn(x). (B14)

Up to a normalization factor which is found below, the
solution of this equation is a modified Bessel function
Rn(x) ∝ K2ikn(

√
2ηex/2). Taking a limit of Kν(z) at

small argument, the wave function Rn(x) in the interval
II is reduced to the plane wave

Rn(x) ∝ A(kn)eiknx +A∗(kn)e−iknx,

A(k) = Γ(−2ik) (η/2)
ik
. (B15)

As to interval I, one can neglect η-dependent poten-
tial whatsoever, and therefore by continuity the plane
wave (B15) is also a solution in the interval I. We can
thus introduce a scattering matrix and a phase shift
from the right potential barrier, S(k) = A(−k)/A(k) =
e−iφ(k), which finally gives us a quantization condition
φ(kn) = πn. Here n = 0, 1, 2, . . . with even/odd n cor-
responding to even/odd wave functions Rn(x), resp., i.e.
Rn(−x) = (−1)nRn(x). For small momenta, kn � 1, we
get with log-accuracy η2ik ' eiπ(n+1) which leads to the
spectrum

εn,l =
π2

4 ln2 η
(n+ 1)2 + l2, n = 0, 1, 2, . . . , l ∈ Z.

(B16)
We now proceed to find a normalization factor for the

radial wave function. For that let’s note that the main
contribution to its norm

∫ +∞
−∞ R2

n(x)dx = 1 comes from
the intervals I and II. The wave function in these regions
is a plane wave,

Rn(x) ∝ |A(kn)| cos
(
knx+ 1

2πn
)
. (B17)

It can be matched to the one found within the semiclas-
sical approximation,

Rn(x) = (Cn/
√
kn) cos

(
knx+ 1

2πn
)
, (B18)
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where the normalization constant is fixed by C2
n =

(2kn/π)(∂kn/∂n). The comparison of these two repre-
sentations leads to the following normalized radial wave
function

Rn,l(x, y) = eily
(

2

π

∂kn
∂n

)1/2

|A(kn)|−1K2ikn(
√

2ηex/2),

|A(k)|−1 =

(
2k sinh 2πk

π

)1/2

, x > 0. (B19)

We use this intermediate result in the next subsection to
evaluate the series expansion of the propagator P chiral

σ′σ .

b. Propagator of Sinai diffusion

Employing a spectral decomposition, the propaga-
tor (7) can be written as a sum over excited eigenstates
|k〉,

P chiral
σ′σ (η, q) = η

∑
n,l

∫
dλdλ̄Γσ

′

k Γ̄σke
−2Ek|q|, (B20)

where

Γσ
′

k = 〈0|[gσ
′
]bf |k〉 (B21)

=
σ′

4π

+∞∫
−∞

dx

2π∫
0

dy

∫
dξ̄dξΦ0(x, y)[gσ

′
]bfΦk(z).

is a matrix element of the field [gσ
′
]bf = (eiσ

′y − eσ′x)ξ
between the ground and excited states and a similar ex-
pression is valid for a conjugated matrix element Γ̄k of
the field [gσ]fb = ([gσ]bf)∗. Using the explicit form of the
excited state,

Φk(z) = Rk(x, y)× eξ̄λ+ξλ̄, (B22)

one can first perform the integral over Grassmanns
(ξ̄, ξ) in Eq. (B21) and verify that the nilpotent part
∼ R′n,l(x, y) of the radial wave function does not con-
tribute to the matrix elements. The latter are then sim-
plified to Γσ

′

k = −λΓσ
′

n,l and Γ̄σk = λ̄Γσn,l with

Γσn,l =
σ

4π

+∞∫
−∞

dx

2π∫
0

dyΦ0(x, y)(eσx − eiσy)Rn,l(x, y).

(B23)
Separating here y-dependent parts of the wave functions,
the integration over the compact angle y yields

σ

2π

∫ π

−π
dy coth

(
x− iy

2

)
(eσx − eiσy)eily = eσxδl + δl+σ.

(B24)

Here the l = ±1 terms induce a gap in the spectrum
(εn,± = εn + 1) thus we keep l = 0 contribution only, the
latter reads

Γσn,0 = − 1
2

∫
eσxK0(

√
2ηe|x|/2)Rn,0(x)dx/ ln η. (B25)

It is worth mentioning that Rn,0(x) is either even or odd
depending on a parity of n, thus Γ+

n,0 = (−1)nΓ−n,0. On

changing the integration variable to z =
√

2ηex/2, the
remaining integral for Γσn,0 is reduced to a table one,∫ +∞

0

zK0(z)K2ik(z)dz = (k2π2/2) sinh−2(πk). (B26)

Finally, taking into account proper normalization factors
given in Eq. (B19), one finds the following matrix ele-
ments

Mσ′σ
n = Γσ

′

n,0Γσn,0

= (σ′σ)n
π2

2

k2
n

η2 ln2 η

(
∂kn
∂n

)
× k3

n cosh(πkn)

sinh3(πkn)

kn�1−→ (σ′σ)n(n+ 1)2

η2 ln5(1/η)
. (B27)

From here the propagator of Sinai diffusion is constructed
as

P chiral
σ′σ (η, q) = η

∑
n,l=0

∫
dλdλ̄Γσ

′

k Γ̄σke
−2|q|Ek

= η

+∞∑
n=0

Mσ′σ
n e−2|q|εn,0 . (B28)

When evaluating the above integral over Grassmann vari-
ables one may notice that the nilpotent correction to the
spectrum, λ̄λε′n,l, does not contribute to the net result.
At large distances, q � 1, essential momenta are small,
kn � 1, and the Laplace transform of (B28) from η to
the time domain yields the result Eq. (18) in the main
text.

As a final remark let us evaluate the integrated prob-
ability

P chiral(η) =
∑
σ′σ

∫
dq P chiral

σ′σ (η, q) = 4η

+∞∑
k=0

M++
2k

ε2k,0
.

(B29)
This series is convergent owing to the exponential decay
of Mσ′σ

n at large momenta kn > 1. In the limit η � 1
one may substitute the sum by an integral to obtain,

P chiral(η) =
π2

η ln2 η

∫ +∞

0

dk
k3 coshπk

sinh3 πk
=

1

4 η ln2 η
.

(B30)
Hence the overall contribution of the critical states to
the walker’s probability decreases in time as P chiral(t) =
1/(4 ln2 t).

Appendix C: Density of states

In the main text we focused on the walker’s critical
dynamics at the topological Anderson localization tran-
sition. As discussed there, the critical dynamics describes
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FIG. 8. Density of states (DoS) of the quantum walk model with averaged angles (θ̄, ϕ̄) = (0, 0) and disorder strengths
γθ = γφ = π/4 for the quasi-energy domain ε ∈ [−π, π] (upper panel) and ε ∈ [−0.16, 0.16] (lower pannel) using different energy
resolution. In the calculations we used averages over 103 disorder configurations. Peaks of the DoS at chiral symmetric energy
ε = 0,±π/2, π are clearly visible.

quasi-energy states centered around the chiral symmetric
energies ε = 0,±π/2, π. To substantiate this statement
we provide here the numerical results for the density of
state (DoS) of the quantum walker with periodic bound-
ary conditions. Fig. 8 (left) shows the disorder averaged
DoS in the entire quasi-energy domain for a system of
Nx = 400 sites. As expected, sharp peaks are visible
at the chiral symmetric energies ε = 0,±π/2, π. Fig. 8
(right) shows a magnified view of the region colored in
red of Fig. 8. With a smaller energy scale for the his-
togram, we can see further structures of the DoS, which
is known to diverge as ∼ 1/(ε ln3 ε)10.

For our discussion it is important to notice that the
number of eigenstates within these energy domains is not
the dominant contribution to the total density of states.
This indicates that a walker initially localized on a single
site is not the optimal choice for a protocol aiming to test
the walker’s critical dynamics, as it involves quasi energy
states from the entire energy band approximately with
equal weight. That is why in the main text we propose
to use the plane wave with momentum p0 = 0, π/2 as
an initial state, which can be used to select only states
within quasi-energy regions centered around the chiral
symmetric energies.

Appendix D: Time-staggered spin polarization

In this Appendix we discuss the time-staggered spin
polarization, observable in a quantum critical walk at a
topological Anderson localization transition. As stated
in the main text, the time-staggered spin polarization in-
volves critical states ε ' ±π/2, related to the chiral sub-

lattice symmetry Ĉsl ≡ σ2⊗ Ŝ, where Ŝ ≡
∑
q |q〉(−1)q〈q|

the sublattice operator. Before discussing the relation be-
tween Ĉsl and a time-staggered signal, it is instructive to
reformulate our discussion in the main text on the chiral
symmetry Ĉ0 ≡ ŝ2, and related spin polarization ∆P , in
a more formal way which readily allows for an extension
to the chiral sublattice symmetry of interest.
Chiral symmetry:—In the main text we introduced the

probability distribution,

Pσ′σ(t, q) = 〈|〈q, σ′|Û t|0, σ〉|2〉θ,ϕ, (D1)

for a walker initially prepared in eigenstate |σ〉 = | ←
〉, | →〉 of the chiral operator Ĉ0 to be found after t time-
steps at a distance q in eigenstate |σ′〉. More formally,
we can separate the walker’s Hilbert space into the direct
sum of subspaces characterized by the quantum numbers
s = ± of the chiral operator Ĉ0, H = H0

+ ⊕ H0
−, and

spanned by

H0
+ = span{|q,←〉}, (D2)

H0
− = span{|q,→〉}. (D3)

The statement on the positive ‘spin polarization’ dis-
cussed in the main text, can then be restated as follows:
for critical states related to the chiral symmetry Ĉ0 the

probability distributions Ps′s: Hs
Ût−→ Hs′ for initial and

final states belonging to the same and different subspaces,
s′ = s respectively s′ = −s, differ and their difference is
strictly positive

Pss(t, q)− P−ss(t, q) > 0. (D4)

Formulated in terms of quantum numbers of the chi-
ral operator, the statement on the positivity (D4) holds
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for critical states related to the chiral symmetry, in-
dependently of its specific form. For the specific chi-
ral symmetry Ĉ0 = ŝ2 quantum numbers are simply
spin-orientations, and the positive difference is indeed
equivalent to the positive ‘spin polarization distribution’,
P chiral
→→ (t, q) − P chiral

←→ (t, q) ≡ ∆P (t, q) > 0, discussed in
the main text. Statement (D4) can now be applied to

the chiral sublattice symmetry Ĉsl, where it shows more
interesting consequences.

Chiral sublattice symmetry:—Separating the walker’s
Hilbert space into the direct sum of subspaces, H = Hsl

+⊕
Hsl
−, characterized by the quantum numbers s = ± of the

chiral sublattice symmetry Ĉsl ≡ σ2 ⊗ Ŝ, we notice that
quantum numbers differ from the spin orientations, and
subspaces are now spanned by

Hsl
+ = span{|2q,←〉, |2q − 1,→〉}, (D5)

Hsl
− = span{|2q,→〉, |2q − 1,←〉}. (D6)

Positivity (D4) holds for critical states related to the chi-
ral operator independently of its specific form, and we
next have to relate this statement to the spin polariza-
tion. The relation is more involved for Ĉsl than for Ĉ0,
since the spin structure of eigenstates of the former al-
ternates between even and odd sites. More specifically,
this implies that the spin structure of Ps′s depends on
the (parity of the) propagated distance q, i.e.

Pss(t, q) =

{
Pσσ(t, q), q even,

P−σσ(t, q), q odd,

P−ss(t, q) =

{
P−σσ(t, q), q even,

Pσσ(t, q), q odd,
(D7)

where s, s′ are the eigenvalues of Ĉsl and σ, σ′ those of σ2.
To structure then above probabilities (D7) according to

the parity of propagated time steps t, we notice that the
single time-step evolution Û propagates states by exactly
one lattice site. Starting e.g. from the even site q = 0
and propagating for an even number of time steps t one,
therefore, ends again on an even site. For an odd number
of time steps t, on the other hand, one ends on an odd
site. That is,

span{|2q, σ〉〉} Û2t

−→ span{|2q, σ〉〉}, (D8)

span{|2q, σ〉〉} Û
2t+1

−→ span{|2q + 1, σ〉〉}. (D9)

and we can relate probabilities Eqs. (D7) to the parity
of propagated steps t as follows. For even numbers of

time steps probabilities Ps′s : Hsl
s

Û2t

−→ Hsl
s′ , conserving

(changing) the quantum number of the chiral sublattice
operator coincides with probabilities preserving (chang-
ing) spin orientation, Ps′s = Pσ′σ. The difference (D4)
is again the spin polarization, Pss(t, q) − P−ss(t, q) =
P chiral
→→ (t, q)−P chiral

←→ (t, q). For odd numbers of time steps,

on the other hand, probabilities Ps′s : Hsl
s

Û2t+1

−→ Hsl
s′
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FIG. 9. A prototype of a linear optical network to realize
a quantum walk discussed in details in the main text (along
the lines of Refs.18,30). A phase modulated laser source (not
shown) generates a train of pulses with a fixed time inter-
val, ∆t, and relative phase difference, 2p0, between adjacent
pulses. HWP: half-wave plate rotated by angle α. QWP:
quarter wave plate; PBS: polarizing beam splitter; BS: beam
sampler; EOM: fast switching electro-optic modulator; SPD:
single-photon detector; PC: polarization controller. Fibers of
different lengths ensure a time delay 2∆t between |H〉 and
|V 〉 states thereby realizing ’shift’ operator T .

conserving (changing) the quantum number of the chi-
ral sublattice operator correspond to probabilities chang-
ing (preserving) spin orientation. In this case Pss(t, q)−
P−ss(t, q) = P chiral

←→ (t, q)−P chiral
→→ (t, q) is the negative spin

polarization distribution. Summarizing, we find that for
critical states ε ' ±π/2 of the chiral sublattice symmetry

Ĉsl positivity (D4) translates into a time-staggered spin
polarization distribution,

P chiral
→→ (t, q)− P chiral

←→ (t, q) = (−1)t|∆P (t, q)|, (D10)

as stated in the main text.

Appendix E: Details of experimental proposal

Here we discuss few technical details related to the
time-multiplexing experimental proposal mentioned in
the main text, see Fig. 9. One envisions a train of equidis-
tant pulses with controlled phase relation to be produced
by a coherent laser source. The half-wave (HWP) and
quarter-wave (QWP) plates are used for the initializa-
tion of input state in the form (25), implementation of
the rotation Rx(θ) as well as in the detection. With
a fast axis aligned horizontally, the plates in the basis
of linearly polarized states, {|H〉, |V 〉}, are characterized
by the diagonal Jones matrices M1/2 = diag(1,−1) and
M1/4 = diag(1, i). Then, for instance, the Jones matrix
of the HWP rotated at α degrees becomes

M1/2(α) =

(
cos 2α sin 2α
sin 2α − cos 2α

)
, (E1)

and, on other hand, M1/4(−π/4) ∼ Rx(π/4) where the
last equality holds up to inessential phase factor.
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Consider now left/right circular polarized states,
|L/R〉 = 1√

2
(|H〉 ± i|V 〉), which are eigenstates of the

operator σ̂2 and thus can be identified with spin states
| →〉 and | ←〉 discussed in the main text. Assum-
ing that a light from a laser source is linearly polar-
ized along |H〉, one checks that M1/4(−π/4)|H〉 = |L〉,
which generates incoming state |ψp0M 〉, cf. Eq. (25) in
Sec. IV A. The same is true for the detection. Owing to
polarizing beam splitters (PBS), two single-photon detec-
tors (SPDs) detect linearly polarized states. Because of
identity 〈R(L)| = 〈H(V )|M1/4(π/4) the later are trans-
formed into circular polarized ones and thereby the mea-
surement of spin-dependent probabilities Pσψ(t, q) de-
fined by Eq. (27) in Sec. IV A can be achieved. Finally,
the identity

Rx(θ/2) = M1/4 ·M1/2(θ/4) ·M1/4 (E2)

is a key to implement a (half)-rotation along x-axis using
three plates as shown in Fig. 9.

Few remarks are now in order with regard to possi-
ble time and spatial scales of the experiment. Following
Refs.39,63 we assume that a laser emits a train of pulses
with interval ∆t ∼ 106 ns at the telecom wavelength
λ ∼ 1550 nm. This timing is chosen such that it is com-
patible with typical switching speeds of the electro-optic
modulators and the deadtimes of the detectors. The in-
tensity of such pulses in initial state should be attenuated
to the single photon level, 〈n〉in ∼ 1, to eliminate many

photon contributions in the click detectors. The inter-
val ∆t requires a fibre length mismatch ∆L ∼ 20 m be-
tween the long and the short path in order to implement
’shift’ operator T of the quantum walk. An initial wave
packet of pulses with a total time span M∆t spreads af-
ter N walk’s steps (each corresponding to a single run
along the interferometer loop) to (M + N)∆t. Thus for
M = 102 and N = 20 the length of a loop should ex-
ceed L ∼ 2.5 km, easily realisable with optical fibres in
the telecom regime. Assuming that losses in the optical
setup stem mainly from the coupling mismatch between
in and outcoupling of the fibres and, in sum, are 20%
per run, we obtain the occupation number of the order
of 〈n〉f ∼ 5 · 10−5 after N = 20 steps. With a repetition
rate of 1 kHz, this leads to 0.05 clicks per second per
time bin, which should be easily detectable by supercon-
ducting singlephoton nanowire detectors within realistic
measurement times. The required step numbers of 20
were already exceeded for a localised input state in63 in
which 36 steps were demonstrated. Also the ensemble
averages over 5000 realizations are in the reach of the ex-
periment, as e.g. in Ref.39 2400 disorder realizations were
already measured. In summary, we strongly believe that
the proposed experimental realisation of the topological
Anderson localization transition is feasible with current
technologies and is thus in the reach of near-future mea-
surements.
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et al., “Quantum walks of correlated photons,” Science
329, 1500–1503 (2010).

16 M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal,
A. Aspuru-Guzik, and A. G. White, “Discrete Single-
Photon Quantum Walks with Tunable Decoherence,”
Phys. Rev. Lett. 104, 153602 (2010).

17 A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J.
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Tamás Kiss, Igor Jex, and Christine Silberhorn, “Probing
measurement-induced effects in quantum walks via recur-
rence,” Science advances 4, eaar6444 (2018).

64 Binh Do, Michael L. Stohler, Sunder Balasubramanian,
Daniel S. Elliott, Christopher Eash, Ephraim Fischbach,
Michael A. Fischbach, Arthur Mills, and Benjamin Zwickl,
“Experimental realization of a quantum quincunx by use
of linear optical elements,” J. Opt. Soc. Am. B 22, 499–504
(2005).

65 P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li,
and Barry C. Sanders, “Experimental Quantum-Walk Re-
vival with a Time-Dependent Coin,” Phys. Rev. Lett. 114,
140502 (2015).

66 Hui Wang, Jian Qin, Xing Ding, Ming-Cheng Chen,
Si Chen, Xiang You, Yu-Ming He, Xiao Jiang, L. You,
Z. Wang, C. Schneider, Jelmer J. Renema, Sven Höfling,
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