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A scheme for the enhanced generation of higher photon-number states is realized, using an optical time-
multiplexing setting that exploits a parametric down-conversion source for an iterative state generation. We use a
quantum feedback mechanism for already generated photons to induce self-seeding of the consecutive nonlinear
process, enabling us to coherently add photons to the light that propagates in the feedback loop. The addition
can be carried out for any chosen number of round trips, resulting in a successive buildup of multiphoton states.
Our system is only limited by loop losses. The looped design is rendered possible by a carefully engineered
waveguide source that is compatible with and preserves the shape of the propagating mode. We compare the
fidelities and success probabilities of our protocol with the common direct heralding of photon-number states.
This comparison reveals that, for same the fidelity, our feedback-based setup significantly enhances success
probabilities, being vital for an efficient utilization in quantum technologies. Moreover, quantum characteristics
of the produced states are analyzed, and the flexibility of producing higher photon-number states with our setup
beyond the common direct heralding is demonstrated.

Introduction.— The photon plays a central role in quan-
tum optics as it represents the fundamental excitation of a
quantized light field. It is also the basic carrier of quantum
information in many quantum communication protocols [1–
3]. Thus, sources of single photons enable insight into funda-
mental physics of elementary particles and satisfy a practical
demand in quantum technologies. These features naturally
extend to higher photon numbers. Multiphoton states are also
prerequisites for even more complex states, such as Holland-
Burnett states [4], cat states [5, 6], tensor network states [7–
9], interesting multiphoton-entangled states [10], which sup-
port applications in quantum information science [2, 11–14].
Therefore, a plethora of experiments investigate what the most
efficient generation methods for high-quality single- and mul-
tiphoton states are; see, e.g., Refs. [15–24].

A key element for photon-number (likewise, Fock) state
generations are parametric down-conversion (PDC) pro-
cesses, being a widely accessible and tunable tool. Nowadays,
a PDC-based heralded generation can be reliably achieved
where fidelities above 90% for single- and multiphoton states
have been reported [20, 24, 25]. Note that other single-photon
sources typically lack the potential to produce higher photon
numbers. Yet the higher the photon number n, the more in-
teresting the applications become. However, this is at the ex-
pense of an ever increasing demand of resources, e.g., num-
bers of multiplexed sources and increased measurement times.

The main limitation in existing PDC-based schemes for
generating photon-number states is that the success probabil-
ity is rather low, significantly diminishing the versatility of
such sources [26, 27]. This is caused by fundamental limits
of generation probabilities, p, implying an exponential decay,
pn, for generating n photons. A simple way to increase p is to
increase the intensity of the pump pulse of the PDC process.
However, unwanted noise contributions in the form of higher
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(larger than n) photon-number components decrease the fi-
delity with the targeted n-photon state considerably. Hence,
an unavoidable trade-off has to be made between measure-
ment time, set by the upper bounded generation probability,
and the state fidelity. It constitutes a timely challenge to over-
come this limitation, which we do in this contribution.

Alternative approaches to increase the success probabil-
ity for producing higher photon-number states are urgently
required, while maintaining practicability and compatibility
with existing devices. Different proposals seek enhancing the
generation by making use of a large-scale time multiplexing
[28], a coherent-state seed input in the PDC process [16], a
recycling of the PDC sources several times [18], employing
a cavity-based PDC processes [19], and interference between
coherent and Fock states via quantum catalysis [29]. Inspired
by such attempts, we recently put forward a theoretical pro-
posal in which a PDC source in a time-multiplexing architec-
ture with looped configuration is used, together with a herald-
ing that employs multiplexed single-photon detectors [30].

In this contribution, we realize the theoretically proposed
source and report on the experimental characterization of the
states that are thereby generated. We demonstrate a suc-
cessive buildup of multiphoton states by introducing a time-
multiplexing architecture. For our conceptual demonstrations,
multiphoton states are produced, and a comparison with a
standard PDC source is carried out. We show a clear en-
hancement in the success probability of our unconventional
approach over stat-of-the-art heralding techniques for multi-
photon states with identical fidelities. Moreover, this enhance-
ment becomes more pronounced the higher the generated pho-
ton number is. We additionally analyze the nonclassicality of
the generated state and show that we have access to exponen-
tially higher photon numbers than without feedback. In con-
clusion, an efficient iterative generation of multiphoton states
is implemented with a platform that is readily available for
applications in quantum technologies.

Concept.— Our experiment is outlined in Fig. 1, left. In
essence, we make use of a seeded PDC process with heralding
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FIG. 1. Left: Setup overview. A laser source optically pumps a PDC source and dichroic mirrors (DMs) ensure that the pump does not interact
with the loop. Generated photon pairs are separated on a polarizing beam splitter (PBS). The vertically polarized idler photons are used for the
state heralding. Horizontally polarized signal photons continue to propagate through the loop and overlap with subsequent pump pulses in the
PDC, controlled by matching the laser’s repetition rate with the round-trip time, both τ . Thus, the cycling modes seeds the PDC process and
more photons are added. After a selected number of round trips, the generated signal can be detected through deterministic out-coupling, using
an electro-optic modulator (EOM) and a PBS. Center: Spatially multiplexed detection (top) for the herald with four single-photon counters
and time-bin multiplexing (bottom) for the signal state with eight detection time bins. In both cases, the incident light is uniformly split into
multiple outputs and the joint number of clicks is recorded, approximating a photon-number resolution. Right: Theoretical prediction of the
quantitative relation between fidelity F and success probability P for the lossless case. We consider the generation for n = 2 (top), n = 3
(middle), and n = 4 (bottom) via the common direct heralding (DH, red) from a PDC source and our feedback heralding (FH, blue) approach
by varying the PDC pump strength [35] between a high power (lower F values and high squeezing) and zero (F → 1 and no squeezing).

to approximate an iterative photon-addition protocol, resulting
in increments â†|n〉 ∝ |n+ 1〉. A theoretical analysis of our
scheme, including imperfections, can be found in Ref. [30].

A main innovation compared to standard schemes for mul-
tiphoton states is the loop architecture around a PDC source,
comparable to a laser cavity. The second-order nonlinear-
ity is a type-II PDC process that leads to polarization-non-
degenerate photon pairs. Vertically polarized photons are im-
mediately directed to a detection unit with a resolution of up
to four photons, certifying that this number of photons has
been added to the horizontal mode. This first step in the itera-
tion scheme is identical to the common approach to producing
multiphoton states, named direct heralding (DH) hereafter.

In our setup, however, horizontally polarized photons (i.e.,
the signal) can further propagate through the loop and tempo-
rally overlap with the subsequent pump pulse, therefore induc-
ing a seeding via quantum feedback of the nonlinear process.
In this manner, additional signal photons can be coherently
added to the cycling mode, similar to the first step with an ad-
dition to vacuum. A key difference to a standard laser cavity
is that our feedback-based system is controllable in terms of
number of round trips and pump pulses, ensured by a deter-
ministic out-coupling via an electro-optic modulator.

The herald and the signal detection consist of a spatial and
time-bin multiplexing scheme, respectively [31, 32]; see Fig.
1, center. In both detection schemes, light is successively split
on 50:50 beam splitters and each output is measured with a
single-photon detector, whose response to detected light is
colloquially referred to as a click. The number of joint clicks
then approximates the number of detected photons [33]. Mea-
suring n clicks in the herald detection, having a resolution of
up to four clicks, over a given number of round trips then indi-
cates the heralded generation of a photon state |n〉. The signal

is characterized using click-counting measurements, however,
with a higher resolution of up to eight clicks.

The right plot in Fig. 1 shows theoretical predictions for the
relation of the resulting fidelity F to the target n-photon state
and the probability P for successfully generating this state in
the lossless scenario. (See also Ref. [18] in this context.) For
reasonable squeezing (i.e., pump powers), we predict a signif-
icantly enhanced performance of our feedback heralding (FH)
when compared with the DH, shown as blue and red curves,
respectively. Interestingly, the advantage is more pronounced
for higher photon numbers (compare plots for n = 2,3,4 from
top to bottom). The goal for our implementation is to demon-
strate this very enhancement.

Implementation.— We use type-II PDC in a periodically
poled potassium titanyl phosphate waveguide, converting
775 nm light to around 1550 nm telecom wavelength. This
source is custom-designed and carefully engineered, being
spatially single-mode and decorrelated [34]. Importantly, the
source exhibits a high spatial mode overlap between in- and
out-coupled modes of the waveguide of 96%, rendering iter-
ative passes through the source in our scheme possible. Fur-
thermore, our source shows a very high single-photon purity,
measured by heralded correlations with gh

(2)(0) = 0.001. The
transmission losses are 0.499 dB/cm and 0.399 dB/cm for
horizontally and vertically polarized light, respectively. The
conversion efficiency for the second-harmonic generation for
our source is 1.10%.

The source is pumped by a Ti:sapphire laser with a repe-
tition rate of 76 MHz. The repetition rate corresponds to a
pulse separation of τ = 13.15 ns and is identical to the round
trip time τ in the loop. To probe the dependence on the pump
power, we used different pulse energies for our measurements
that are fitted to squeezing parameters |ζ | from∼ 0.1 to∼ 0.3,
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likewise 1.0 dB–2.6 dB squeezing [35].
For the detection, we use superconducting nanowire single-

photon detectors: N′ = 4 detectors with dead times of 10 ns
and efficiencies of 75% for the idler and two detectors (for the
four time bins in two outputs, resulting in N = 2× 4 = 8 de-
tection bins) with 60 ns dead time and 95% efficiency for the
signal. The overall detection efficiency of the spatial mul-
tiplexing is estimated as η ′ = 0.36, and it is η = 0.38 for
the time-bin multiplexing. The round-trip losses without the
source are 3%. When including the source, we obtain a loop
efficiency ηloop between 50% and 60%, being the main lim-
itation. This total loop efficiency contains the transmission
losses in the waveguide, impurities of the mode overlap, and
losses due to all other components in the setup.

The source is optically pump t times, allowing the signal to
propagate t− 1 times in the loop. We monitor the number of
heralding clicks, resulting in a click pattern (k1, . . . ,kt), where
k j ∈ {0, . . . ,N′} is the number of clicks in the jth round. Then,
the light is coupled out and the click-counting distribution ck
of the signal is measured. These data are stored and processed
as follows. A conditioning to a given pattern, (k1, . . . ,kt), de-
termines the targeted number of photons, n = k1 + · · ·+ kt .
Specifically, t = 1 and k1 = n realizes a DH, and t = n and
(k1, . . . ,kt) = (1, . . . ,1) implements a FH of an n-photon state.
The success probability P is defined as the ratio of measure-
ments that lead to a desired click pattern to the total number
of measurements. Fidelities are obtained through the Bhat-

tacharyya coefficient, F = ∑
N
k=0

√
c(sim)

k
√

ck, between the
measured data ck and the simulated click-counting distribu-
tion c(sim)

k for the target state. Moreover, the nonclassicality
in terms of the negativity N of the matrix of moments of the
measured click-counting statistics is determined [36, 37].

See the Supplemental Material (SM) [38] for further techni-
cal details. Also note that our entire data analysis framework
is based on measured quantities alone.

Results.— Figure 2 shows the measured (crosses) success
probabilities (top) and the corresponding fidelities (bottom)
for DH (red) and FH (blue) by varying the pulse energy, i.e.,
the squeezing parameter. Uncertainties are included as ver-
tical bars but mostly not visible. Lines connect the results
for n = 2,3, and 4 heralded photons (solid, dashed, and dot-
ted, respectively). Note that c(sim)

k for obtaining the fidelity F
here includes the signal detection losses η and herald detec-
tion losses η ′ as they are identical for both DH and FH.

The success probability (Fig. 2, top) increases with higher
pulse energies and is generally higher for smaller n values.
Importantly, P for FH always stays above the correspond-
ing values for the DH. In all cases, the success probabil-
ity increases with the pump power since photon pairs are
produced—and thus heralded—at a higher rate. For FH and
DH, a lower n leads to a higher P in an almost equidistant
manner in the logarithmic depiction, an expected result as the
generation efficiency roughly scales exponentially with the
number of photons. For a two-photon state, the success proba-
bility for FH is as much as 60% higher than the one for the DH
scheme. By adding further passes through the pumped PDC
source, this improvement over the DH continues to increase,

FIG. 2. Success probability P (top) and fidelity F (bottom)—the
former on a logarithmic scale—as a function of the squeezing pa-
rameter |ζ | for n = 2,3, and 4 photons (solid, dashed, and dotted,
respectively) generated via DH (red) and FH (blue). Note that F for
DH and n = 2 and 3 (solid and dashed) are almost identical.

resulting in 17-fold increase for the four-photon state.
The fidelities (Fig. 2, bottom) for the DH stay close to 99%

while the fidelity for the FH drops with the number of round
trips; thus, the loop efficiency requires future improvements.
To account for this fact with the currently available setup, we
also compared the DH signal when it is subjected to identical
loop losses; see Fig. 3 for the two-photon generation and the
SM [38] for the three-photon scenario. This is achieved by
leaving the DH signal in the loop for an additional round trip,
resulting in the heralding click pattern (2,0); recall that the
corresponding FH is determined by the pattern (1,1). Then,

FIG. 3. Success probability P (left) and fidelity F (right) for the
generation of a two-photon state with FH (blue) and DH (red) for the
same total losses. The latter is realized by propagating a two-photon
state from DH in the loop without adding further photons. The fi-
delity is calculated between the measured data and the simulations
of ideal two-photons states, including detection losses.
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the FH exceeds the DH in both figures of merit, P and F ,
proving that the current limitation is the loop efficiency ηloop.

A F -P diagram is plotted in Fig. 4, analogously to Fig.
1. Note that the changes in the monotonic behavior in the
accessible regions of both plots are due to losses. The fidelity
is reduced here because the comparison of the raw data ck with
a lossless theory c(sim)

k , i.e., perfect states |n〉 and detectors.
The FH clearly outperforms the DH since the former curve
is above the latter; and only FH can achieve high generation
probabilities. Hence, the loss of fidelity is less severe than
what one gains in success probability.

Finally, we benchmark the amount of nonclassicality. In
addition, we demonstrate the versatility of our approach that
employs a multiplexed detection for the heralding. See Ta-
ble I for an overview. Since we have eight detection bins for
the signal, our nonclassicality characterization enables us to
employ moments up to the eighth order [33, 37], exceeding
commonly applied second-order correlation functions.

The first three rows of the table compare the nonclassicality
for two-photon states, in the order: DH, FH, and DH with loop
losses. While the mean nonclassicality N for DH is the high-
est, it is generated with a statistical significance (i.e., reliabil-
ity) which is lower than for FH. When taking loop losses into
account, as discussed above, the FH beats the DH by more
than a factor of two in the absolute negativity, too. For the
three-photon generation, fourth and fifth row, the significance
is again higher for the FH (24 standard deviations) compared
with the DH (17 standard deviations). For the four-photon
generation, rows with n = 4, we additionally include the case
of generating two photons in each of two round trips. Inter-
estingly, this results in a four-photon state with a significance
that is identical to the FH case and an absolute negativity of
the same order of magnitude as in the DH scenario.

FIG. 4. Relation between fidelity F and success probability P for
DH (dark red) and FH (dark blue) for the generation of n = 2 (top,
solid), n = 3 (middle, dashed), and n = 4 (bottom, dotted) photons.
The light red and blue curves show the theoretical predictions that
model the system’s imperfections [30, 38].

TABLE I. Nonclassicality N , verified through a negative value, and
its statistical significance (rightmost column) for different heralding
click patterns (first column), resulting in different n-photon states,
obtained from t pump pulses for a squeezing parameter |ζ | ≈ 0.3.

Heralding pattern n t N ×10−4 |N |/σ(N )

(2) 2 1 −13.515 ± 0.096 141
(1,1) 2 2 −9.054 ± 0.050 183
(2,0) 2 2 −4.136 ± 0.048 87
(3) 3 1 −18.3 ± 1.1 17
(1,1,1) 3 3 −5.35 ± 0.23 24
(4) 4 1 −25 ±13 2
(2,2) 4 2 −13.2 ± 2.6 5
(1,1,1,1) 4 4 −5.2 ± 1.1 5
(1,1,1,2) 5 4 −16.9 ± 7.0 2.4
(1,1,1,3) 6 4 −63 ±37 1.7

As a proof of concept, the remaining rows in Table I exem-
plify generalized heralding schemes with n> 4 photons, being
impossible with DH with four detectors. In principle, we can
produce exponentially more photons via our FH, n ≤ (N′)t ,
with N′ multiplexed heralding detectors and t passes through
the source, while DH is constrained to t = 1. Consequently,
our FH supersedes the DH in terms of generating the targeted
states and allows for a more flexible approach to higher-order
photon-number states. Unlike the DH, the FH can, in princi-
ple, generate arbitrary photon-number states with a finite de-
tector resolution, N′, and t is only loop-loss-limited.

Conclusion.— Going conceptually and performance-wise
beyond existing sources, we realized an advanced source for
multiphoton states by operating a PDC source in a quantum
feedback loop. No equivalent source has shown to exper-
imentally generate multiphoton states this manner, rendered
possible by an optimized source engineering. Rather than us-
ing a DH, we operate our PDC source in a time-multiplexing
feedback loop, allowing us to coherently add photons with
every round trip. The coherent addition of more than one pho-
ton to the traveling mode is achieved by a spatial multiplex-
ing of four detectors, yielding a quasi-photon-number resolu-
tion that is typically not considered in cavity-based heralding
schemes. A high mode overlap of the deterministically in- and
out-coupled light of the PDC source and the high stability of
our setup ensures the efficient operation of our system as an
iterative photon adder in a loop-based architecture.

We showed that our FH exceeds the generation rate
of photon-number states when compared to traditional ap-
proaches, and this effect is more pronounced for higher pho-
ton numbers. The success probability for a two-photon state
generated with the FH is 60% higher than the one for the DH
source, and we found an up to 17-fold improvement for a four-
photon state. The FH exhibits a high fidelity with perfect
photon-number states, limited by the loop losses. When ac-
counting for the latter imperfections, an improvement that is
worth pursuing in future, we find that our scheme does also
result in higher fidelities when compared to the traditional
loopless approach. The same can be concluded from our non-
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classicality analysis in which we also generated states that are
inaccessible with a comparable DH.

Therefore, an advanced time-multiplexed PDC source for
the successive buildup of arbitrary photon-number states has
been introduced that overcomes the fundamental limitation of
other sources. This renders it possible to realize protocols
in quantum technology that require such highly nonclassical
states of light to overcome limitations of classical systems.
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SUPPLEMENTAL MATERIAL

Here, we provide further theoretical and experimental de-
tails in addition to the key results as presented in the main
text. In Appendix A, we briefly reintroduce the theoretical
framework as used for the analysis and simulation. In Ap-
pendix B, the estimation of uncertainties for fidelity, success
probability, and nonclassicality is formulated. Appendix C 1
contains a detailed setup description. In Appendix C 2, further
experimental results are presented. In Appendix C 3, we show
additional analyses of the states’ nonclassicality.

Appendix A: Lossless scenario

For the readers’ convenience, we briefly recall the model
developed in Ref. [30]. It is based on exponential operators of
the form Ê(x) = xn̂ = :e(x−1)n̂: and a two-mode squeezer with
a gain γ = cosh2 |ζ |, where |ζ | is the amplitude of squeezing
parameter, being proportional to the square root of the pump
power of a single pulse. Then, if the inputs to the two-mode
squeezer are vacuum and Ê(x) and one of the outputs is traced
out with Ê(z), the remaining output reads

F̂(x,z) =
1
γ

Ê
(

x+[γ−1]z
γ

)
. (A1)

The positive operator-valued measure of the click-counting
statistics takes the form Π̂k =

(N
k

)
∑

k
j=0
(k

j

)
(−1)k− jÊ( j/N) for

k clicks from N detectors, assuming no detection losses and
being a linear combination of the previously defined exponen-
tial operators. For example, for a perfect n-photon state, the
resulting click-counting distribution simplifies to

c(n)k = 〈n|Π̂k|n〉=
(

N
k

)
k!
Nn

{
n
k

}
, (A2)

where { n
k} = k!−1

∑
k
j=0
(k

j

)
(−1)k− j jn denotes the Stirling

number of the second kind. With this approach from Ref.
[30], we can model the DH and FH, including imperfections,
such as losses, (excess) noise contributions, and the finite de-
tector resolution.

In a first application, we consider the ideal case of di-
rect heralding. Then, we get as the output of the two-mode
squeezer with two vacuum inputs (x = 0) for a measurement
of n clicks from N′ heralding detectors the following, not nor-

malized state:

ρ̂n =
1
γ

(
N′

n

) n

∑
j=0

(
n
j

)
(−1)n− jÊ

(
[γ−1] j

γN′

)
, (A3)

being a linear combination of our exponential operators that
originates from the expansion of the click-counting measure-
ment operators, specifically Π̂n. The trace of this operator
then yields the normalization and is identical to the success
probability,

P = tr(ρ̂n) =
1
γ

(
N′

n

) n

∑
j=0

(
n
j

)
(−1)n− jγN′

γN′− [γ−1] j
. (A4)

Also, the normalized click-counting statistics for k clicks from
N multiplexed detectors for this state can be directly obtained,

c(DH)
k =

1
Pγ

(
N′

n

)(
N
k

) n

∑
j=0

k

∑
j′=0

(
n
j

)(
k
j′

)
× (−1)n− j(−1)k− j′ NN′γ

NN′γ− [γ−1] j j′
.

(A5)

This expression can be used to compute the fidelity with the
click-counting statistics of the perfect n-photon state, F =

∑
N
k=0

√
c(n)k c(DH)

k . The resulting figures for P and F are plot-
ted in Fig. 1 (right) of the main text to illustrate the theory of
DH with multiplexing detectors.

The second example concerns the iterative addition of one
photon over n round trips, initialized with vacuum, i.e., the
FH scenario in the same Fig. 1. For this purpose, it is con-
venient to explicitly write Π̂1 = N′[Ê(1/N′)− Ê(0)], where
Ê(0) = |0〉〈0|, for one click from N′ multiplexed on-off de-
tectors. Thus, for the single input Ê(x), we find the output of
one heralding click as [N′/γ]Ê(γ−1)[Ê(x+ γ−1

N )− Ê(x)]. The
n-fold iteration with an initial value x = 0 then results in the
not normalized state

ρ̂n =

(
N′

γ

)n

Ê
(

1
γn

) n

∑
j=0

(
n
j

)
(−1)n− jÊ

(
j
[γ−1]

N′

)
. (A6)

As in the previous example, the normalization yields the suc-
cess probability and reads

P = tr(ρ̂n) =

(
N′

γ

)n n

∑
j=0

(
n
j

)
(−1)n− jN′γn

N′γn− [γ−1] j
. (A7)
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The click-counting statistics takes, from which one can deter-

mine the fidelity F = ∑
N
k=0

√
c(n)k c(FH)

k , obeys

c(FH)
k =

1
P

(
N′

γ

)n(N
k

) n

∑
j=0

k

∑
j′=0

(
n
j

)(
k
j′

)
× (−1)n− j(−1)k− j′ NN′γn

NN′γn− [γ−1] j j′
.

(A8)

All above considerations already include excess noise from
the amplification process that is the two-mode squeezer and
the finite resolution of the multiplexing detectors [30].

For our other simulations, the only thing left is the treatment
of loss that can be achieved with a simple modification of the
ideal exponential operators, like elaborated on in detail in Ref.
[30]. For instance, signal detection losses η are included in
the click-counting statistics of the target state |n〉 for obtaining
the simulated c(sim)

k that is compared with the measured data
via the fidelity in Figs. 2 and 3 in the main text.

Appendix B: Error estimation and propagation

In the following, we discuss the general error estimation
and propagation for the fidelity, success probability, and non-
classicality as applied to obtaining the results in the main text.

Suppose Ck denotes the click-counting events for the signal
using N = 8 multiplexed detection time bins, where k is the
number of detection bins jointly recording a click. The total
number of recorded events is given by C = ∑

N
k=0 Ck. Further-

more, we want to estimate the value of a quantity f , described
by the parameters fk for each number 0≤ k≤N of joint clicks,
resulting in the mean value

f =
1
C

N

∑
k=0

fkCk. (B1)

Similarly, the second moment is given by f 2 = ∑
N
k=0 f 2

k Ck/C.
From the above relations, the variance of f can be estimated,
which then yields the random error as

σ( f ) =

√
f 2− f 2

C−1
. (B2)

Such a direct sampling and error estimation of relevant
quantities is an efficient way to obtain experimental values,
f = f ±σ( f ), for linear expressions. For instance, the m-th
normally ordered moment of the click-counting statistics is
described through

fk =

(k
m

)(N
m

) , (B3)

where
(k

m

)
= 0 for m > k and 0 ≤ m ≤ N [36]. From these

moments, we can determine the matrix of moments M =
M±σ(M) to determine nonclassicality [36], where σ(M) is
the matrix of uncertainties of the individual moments. This

is done by finding the normalized eigenvector v to the min-
imal eigenvalue of M. The mean negativity for nonclassical
light is then given by v†Mv and a quadratic error propaga-
tion yields the uncertainty [(v2)†σ(M)2(v)2]1/2, where •2 de-
notes the entry-wise square; see also Ref. [37] for details. The
thereby determined negativity is N , as used in the main text.

Another example concerns the determination of a random
error of the statistics itself, achieved by setting fk = δk,k′ ,
where δk,k′ = 1 for k = k′ and δk,k′ = 0 otherwise. This yields
f =Ck′/C = f 2 and σ( f ) = [ f (1− f )/(C−1)]1/2. Therefore,
the estimate of the click-counting statistics reads

ck =

=Ck/C︷︸︸︷
ck ±

√
ck(1− ck)

C−1︸ ︷︷ ︸
=σ(ck)

, (B4)

which is useful for the following nonlinear error propagation.
Also, this expression is helpful when determining an error for
success probabilities to measure k heralding clicks in the case
that we consider the heralding detection rather than the signal
measurements. Note that k = (k1, . . . ,kt) could be a multi-
index in the case of t source passes, with k j clicks in the jth
propagation through the source. Then the above formula is
used to determine errors for the success probability P for a
given heralding click pattern.

We now consider a general, nonlinear function F =
F(c0, . . . ,cN) of the click-counting statistics. Employing the
standard technique for statistical estimates and error propaga-
tion, we get the mean value

F = F(c0, . . . ,cN) (B5)

and, using a quadratic error propagation, the random error es-
timate

σ(F) =

[
N

∑
k=0

(
∂F(c0, . . . ,cN)

∂ck

)2

σ(ck)
2

]1/2

(B6)

to which Eq. (B4) can be applied for identifying ck and σ(ck).
For instance, the fidelity is given by a nonlinear expression of
the form

F =
N

∑
k′=0

Fk′
√

ck′ , (B7)

where Fk is the square root of the target click-counting distri-
bution, obtained theoretically as outlined in Appendix A. The
derivative then yields ∂F/∂ck = Fk/(2

√
ck). Thus, we get

F = ∑
N
k′=0 Fk′ck′

1/2 and

σ(F) =
1

2
√

C−1

√
N

∑
k=0

F2
k (1− ck) (B8)

when applying the expressions derived previously. For Fk =

(c(sim)
k )1/2, we obtain the error margins for the fidelity F .
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TABLE II. Realized pump pulses t and the fitted values depending
on the pulse energies for their squeezing parameters |ζ |.

|ζ | for t = 1 |ζ | for t = 2 |ζ | for t = 3 |ζ | for t = 4
0.1172 0.1491

0.1730 0.1670 0.1961 0.1670
0.2543 0.2326 0.2440 0.2326
0.2975 0.3038 0.2980 0.3038

Appendix C: Additional experimental details and results

In this appendix, we provide further technical details about
the experiment and additional results from our vast data anal-
ysis. We show a detailed sketch of the experimental setup
used for the state generation, give details about the measure-
ments and the data acquisition. Furthermore, we recorded
data for t ∈ {1,2,3,4} passes of the source and for different
squeezing levels, as provided in Table II. Moreover, we have
performed additional analysis of the data regarding fidelities,
success probabilities and nonclassicalities.

1. Detailed description of the experiment

Figure 5 shows a more detailed sketch of our setup. There
are five parts in the setup that are described in the following:
pulse picking, source, delay, heralding, and detection.

First, the measurements for the FH are performed with ex-
actly n pump pulses for generating an n-photon state, and we
use only one pump pulse entering the setup for the DH. There-
fore, a pulse picking is realized for sending exactly the wanted
number of pulses into the setup. This is done by a fast EOM,
which changes the polarization of the initial pulses from ver-
tical to horizontal polarization so that only the picked pulses
enter the setup at the PBS. The HWP is used to match the
polarization axes of the EOM and the PBS.

These pump pulses enter the setup, are coupled in and out
of the PDC source via lenses, and are filtered after the source
by a BPF. The source is a periodically poled potassium titanyl

FIG. 5. Detailed setup sketch of our approach to generating photon-
number states. HWP: half-wave plate; PBS: polarizing beam spitter;
PDC: parametric down-conversion; BPF: band-pass filter; DWDM:
dense wavelength division multiplexing; EOM: electro-optic modu-
lator. For further information, please see the text.

phosphate (ppKTP) chip with rubidium in-diffused waveg-
uides. Because of this custom-engineered ppKTP source and
waveguides, the photons are spatially single mode, the photon
pair is decorrelated, and we have a back-coupling efficiency
between the out- and in-coupling of the cycling mode of 96%,
allowing us to utilize this waveguide for the feedback.

We use narrow-band DWDM filter in both arms for a spa-
tial filtering of the side peaks in the spectrum of both sig-
nal and idler. The waveguide has low transmission losses of
0.399 dB/cm for vertical and 0.499 dB/cm for horizontal po-
larization, which result into a total loss of 8.78% and 10.85%,
respectively. Moreover, the conversion efficiency is 1.10%,
and the central wavelength within the PDC process is given as
771 nm for the pump and 1542 nm for signal and idler. The
single-photon purity, given by the heralded quantum correla-
tion function, is ca. g(2)h (0) = 0.001 and generally depends on
the pulse energies.

Signal and idler are then separated by propagating thought
a PBS, and the idler is detected and functions as the heralding.
The heralding is performed by a spatial-multiplexed detection
with a resolution of four clicks, where each detector has a
efficiency of 76% and a dead time of 10 ns.

The signal photon enter the feedback path where we have
to match the feedback path length with the repetition rate of
76 MHz of the laser pulses. Because of several optical ele-
ments in the feedback, such as the crystal in the EOM and the
PBS, the effective path length of the feedback is different to
the geometric path. Hence, we match both in a range less than
1 µm, which is accessible by fine-tuning with a delay stage.
Specifically, the delay defines our overlap of the pump pulses
and the feedback mode.

After a selected number of round trips, the cycling mode is
coupled out of the loop, which is performed deterministically
by matching the switching of the first and second EOM. The
polarization of the cycling mode is thus changed into vertical
and reflected at the second PBS. Again, a HWP is used for
matching the polarization axes of the EOM and the PBS. The
subsequent signal state detection is carried out with a time-
multiplexed detection with an eight-click resolution, where
the detectors have efficiencies of 95% and dead times of 60 ns.

For the data acquisition, we perform experiments in blocks,
in which every block contains 10000 measurements, where
a measurement is defined by one initial trigger event every
1 MHz. Here, we realized 30000 blocks for one data point for
every state generation, resulting in a total of 300 million indi-
vidual measurements. With increasing number of time bins in
the heralding, depending on the number of pump pulses enter-
ing the source, the measurement time is increasing, too. The
measurement time for one single block for the DH is 0.896 s;
for the two-photon state generation with the FH, the time in-
creases to 1.324 s; for the three- and four-photon state, it is
1.576 s and 2.060 s, respectively. Thus, the total measurement
for one data point for the DH is 7.49 hours; for the FH, it is
11.03 hours for two, 13.13 hours for three, and 17.16 hours
for four source passes, respectively.

We used our model from Ref. [30] (see also Appendix A) to
compare our data with theoretical predictions. Our measure-
ments included several pump energies, which we fitted to our
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FIG. 6. Success probability P (left) and fidelity F (right) for a
n= 3-photon state for DH (red), FH (dark blue), and additional three-
photon-heralding click patterns (various shades of blue, dotted).

model for obtaining several system parameters, such as de-
tection efficiencies (given in the main text) and squeezing pa-
rameters (Table II). For better comparison reasons, we carry
out the measurements for each state for comparable squeez-
ing parameters. As an additional information, the fitted loop-
propagation efficiency for t − 1 = 1 round trip is 60% and
dropped to 55% and 52% for t = 3 and t = 4, respectively.

2. Fidelity and success probability

Similarly to Fig. 3 for two photons in the main text, Fig.
6 shows the fidelity and the success probability for the three-
photon state generation with the DH, the FH, and the addi-
tional cases of exactly three heralding clicks in only one round
trip, corresponding to the click patterns (3,0,0), (0,3,0), and
(0,0,3). This is done to compare various DH scenarios of
n = 3 photons that is additionally subject to the same amount
of round-trip losses as the FH.

The fidelity of three clicks in the first and last round trip
differ from the state’s fidelity with the FH pattern (1,1,1). But
the pattern with three clicks in the second cycle stays close to
the FH. The explanation for this behavior is the same as for
the special cases in the two-photon state generation; different
pattern see different amplifications and loop losses. Since the
case (0,0,3) is not affected by loop loses, the fidelity is the
highest while the (3,0,0) case is significantly affected by the
loop loss. The success probabilities for the additional cases
are almost the same, still higher than for the DH.

For complementing the results shown in form of Fig. 2 in
the main text, we provide the corresponding values, including
a one-standard-deviation error margin, in Table III for the two-
photon, in Table IV for the three-photon, and in Table V for
the four-photon generation. One can see that the uncertainties
for the success probability and the fidelity are increasing with
increasing the photon number. Furthermore, the uncertainty is
increasing faster for the DH compared to the FH. For example,
the success probability for the highest squeezing parameter |ζ |
for a four-photon state shows that the uncertainty of the DH
case is five times larger than for the FH. This strengthens the
observation in terms of a statistical quantification that we gen-
erate in total more successive events for the given heralding
case in the feedback-based system. Another point worth men-
tioning here is that, for both DH and FH, the uncertainty in-

TABLE III. Fidelities and success probabilities, including their un-
certainties, for n = 2 and comparable squeezing parameters |ζ |.

|ζ | F [%] P [‰]

FH 0.167 96.10± (7.48×10−4) 0.191± (2.60×10−4)

DH 0.173 99.99± (7.51×10−4) 0.137± (3.08×10−4)

FH 0.233 95.88± (6.09×10−4) 0.706± (4.02×10−4)

DH 0.254 99.99± (7.73×10−4) 0.637± (6.76×10−4)

FH 0.304 95.17± (7.89×10−4) 1.999± (8.59×10−4)

DH 0.298 99.98± (7.84×10−4) 1.203± (9.41×10−4)

TABLE IV. Fidelities and success probabilities, including their un-
certainties, for n = 3 and comparable squeezing parameters |ζ |.

|ζ | F [%] P [‰]

FH 0.196 87.70± (9.79×10−4) 0.0177± (6.79×10−5)

DH 0.173 99.95± (6.54×10−4) 0.0011± (2.81×10−5)

FH 0.244 86.58± (9.89×10−4) 0.0443± (1.34×10−4)

DH 0.254 99.99± (6.61×10−4) 0.0119± (9.24×10−5)

FH 0.298 85.59± (10.3×10−4) 0.1509± (2.59×10−4)

DH 0.298 99.98± (6.63×10−4) 0.0316± (1.53×10−4)

TABLE V. Fidelities and success probabilities, including their uncer-
tainties, for n = 4 and comparable squeezing parameters |ζ |.

|ζ | F [%] P [‰]

FH 0.167 74.59± (14.1×10−4) (9.14±0.58)×10−5

DH 0.173 97.78± (4.89×10−4) (6.21±2.07)×10−6

FH 0.232 77.03± (13.4×10−4) (1.66±0.02)×10−3

DH 0.254 99.70± (5.49×10−4) (1.11±0.08)×10−4

FH 0.304 73.32± (19.8×10−4) (7.19±0.05)×10−3

DH 0.298 99.95± (5.38×10−4) (4.20±0.17)×10−4

creases when decreasing the squeezing parameter |ζ | because
the number of recorded events is dropping.

3. Nonclassicality

Finally, we provide a closer look at the nonclassicality anal-
ysis and the effects of the loop losses. Figure 7 (top) shows
the presented data of the nonclassicality given in Table I in
the main text for the DH and FH. One would naively ex-
pect that N is increasing with increasing photon number and
that the significance is decreasing because of fewer successful
events for the heralding of more photons. In actually, how-
ever, the nonclassicality for the feedback-based case behaves
differently since it is dropping with increasing photon num-
bers. Since the main limiting factor is the loop losses, we
analysed this influence to explain this conundrum. Therefore,
we performed a simulation of the same scenarios but with-
out loop losses, which can be found in Fig. 7 (bottom). In
this scenario, we observe the expected behavior of increas-
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FIG. 7. Top: Nonclassicality N (left) and the signed significance
in standard deviations of the nonclassicality |N |/σ(N ) (right) for
a two-, three-, and four-photon state measured with a squeezing pa-
rameter |ζ | ≈ 0.3. Blue and red bars show the results for FH and DH,
respectively. Bottom: Nonclassicality N simulated for the same sys-
tem parameters but without loop losses.

ing nonclassicality with increasing photon number. Also, the
negativity N for FH is then higher than for DH. This further

confirms that the limiting factor in the setup is the loop loss.
Furthermore, we investigated additional click pattern for

heralding multiphoton states in several round trips. Additional
interesting cases for more than four photons, not shown in Ta-
ble I in the main text, are provided in Table VI.

The first four rows show different heralding click patterns
that result in the heralding of n = 5 photons in t = 2 passes
through the source. First, the negativity shows us that it is
beneficial to have fewer photons first source passing before
adding the remaining photons in the second cycle since fewer
photons are subjected to round-trip losses. Second, the best
statistical quality of N is, however, reported for the herald-
ing click pattern (2,3) since it results in more heralding de-
tection events than the pattern (1,4), requiring a four-fold co-
incidence. Thus, it is beneficial to produce the fewest photons
possible per cycle and fewer photons in earlier passes for op-
timal nonclassicality. The last three rows of Table VI show
the generation of six photons for different numbers of round
trips. Note that the statistical significance in all given cases is
expected to be quite low because of the significantly dimin-
ished number of recorded five- and six-fold coincidences over
multiple round trips.

TABLE VI. Nonclassicality N and its statistical significance
|N |/σ(N ) for different heralding click patterns, resulting in dif-
ferent n-photon states, where n > 4, obtained from t pump pulses for
a squeezing parameter |ζ | ≈ 0.3.

Heralding pattern n t N ×10−4 |N |/σ(N )

(1,4) 5 2 −22 ±33 0.7
(2,3) 5 2 −17 ±17 1.0
(3,2) 5 2 −13 ±20 0.7
(4,1) 5 2 −9 ±32 0.3
(3,3) 6 2 −12 ±28 0.4
(2,2,2) 6 3 −1.8 ± 1.1 1.7
(1,1,2,2) 6 4 −1.3 ± 1.1 1.1

[1] C. H. Bennett and G. Brassard, Quantum cryptography: Public
key distribution and coin tossing, Theor. Comput. Sci. 560, 7
(2014).

[2] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and
G. J. Milburn, Linear optical quantum computing with photonic
qubits, Rev. Mod. Phys. 79, 135 (2007).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, England, 2000).

[4] M. J. Holland and K. Burnett, Interferometric detection of op-
tical phase shifts at the Heisenberg limit, Phys. Rev. Lett. 71,
1355 (1993)

[5] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier,
Generation of optical ’Schrödinger cats’ from photon number
states, Nature (London) 448, 784 (2007).

[6] E. V. Mikheev, A. S. Pugin, D. A. Kuts, S. A. Podoshvedov, and
N. Ba An, Efficient production of large-size optical Schrödinger

cat states, Sci. Rep. 9, 14301 (2019).
[7] X. Zou and W. Mathis, Generating a four-photon polarization-

entangled cluster state, Phys. Rev. A 71, 032308 (2005).
[8] X. Zou, K. Pahlke, and W. Mathis, Generation of an entangled

four-photon W state, Phys. Rev. A 66, 044302 (2002).
[9] I. Dhand, M. Engelkemeier, L. Sansoni, S. Barkhofen, C. Sil-

berhorn, and M. B. Plenio, Proposal for Quantum Simulation
via All-Optically-Generated Tensor Network States, Phys. Rev.
Lett. 120, 130501 (2018).

[10] J. Sperling, A. Perez-Leija, K. Busch, and C. Silberhorn, Mode-
independent quantum entanglement for light, Phys. Rev. A 100,
062129 (2019).

[11] N. Gisin and R. Thew, Quantum communication, Nat. Photon-
ics 1, 165 (2007).

[12] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient
quantum computation with linear optics, Nature (London) 409,
45 (2001).

https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1038/nature06054
https://doi.org/10.1038/s41598-019-50703-1
https://doi.org/10.1103/PhysRevA.71.032308
https://doi.org/10.1103/PhysRevA.66.044302
https://doi.org/10.1103/PhysRevLett.120.130501
https://doi.org/10.1103/PhysRevLett.120.130501
https://doi.org/10.1103/PhysRevA.100.062129
https://doi.org/10.1103/PhysRevA.100.062129
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009


10

[13] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzi, S.
M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf,
Deterministically Encoding Quantum Information Using 100-
Photon Schrödinger Cat States, Science 342, 6158 (2013).

[14] J. O’Brien, A. Furusawa, and J. Vučković, Photonic quantum
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Ultra-fast heralded single photon source based on telecom tech-
nology, Laser Photonics Rev. 9, L1 (2015).

[24] M. Cooper, L. J. Wright, C. Söller, and B. J. Smith, Experi-
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