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We implement a compressive quantum state tomography capable of reconstructing any arbitrary low-rank
spectral-temporal optical signal with extremely few measurement settings and without any ad hoc assumptions
about the initially unknown signal. This is carried out with a quantum pulse gate, a device that flexibly imple-
ments projections onto arbitrary user-specified optical modes. We present conclusive experimental results for
both temporal pulsed modes and frequency bins, which showcase the versatility of our randomized compressive
method and thereby introduce a universal optical reconstruction framework to these platforms. © 2021 Optical

Society of America
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1. INTRODUCTION

Encoding quantum information in time and frequency domains [1–3]
has gained significant attention and has been proven to be a suitable
alternative for scalable quantum information processing [4–6]. These
encodings allow one to access high-dimensional Hilbert spaces, which
may provide enhancements to quantum information extraction, cryptog-
raphy, and communication tasks [7–13]. In addition, such encodings
distinghuish themselves by being directly compatable with single-mode
fiber networks, because they occupy only one single spatial mode. How-
ever, reliable time measurements with high sufficient resolution are
still challenging, in particular at telecommunication wavelengths.

Achieving the quantum performance in applications requires an ef-
ficient and trustworthy characterization of the experimental procedures,
which is the scope of tomography. The proper and unambiguous esti-
mation of quantum states with minimal resources is thus of paramount
importance. The infinite-dimensional Hilbert space describing these
encodings demands a computationally effective and experimentally
feasible procedure.

Compressive schemes have been concocted to efficiently reduce the
measurement settings required to reconstruct a signal [14]. However,
they require a precise knowledge of the maximal rank of the unknown
state, which is not always feasible in realistic scenarios. To bypass this
drawback, in Refs. [15–19], new compressive schemes have been de-
signed to characterize various low-rank states, gates, and measurements
in different degrees of freedom. Crucially, they require no assumptions
about the unknown quantum objects in question.

In this work, we develop and experimentally implement a compres-
sive tomography in the time-frequency (TF) domain that allows us to
uniquely determine unknown signal states that are near-coherent using
very few measurement configurations. This is especially relevant in the
single-photon regime, where a small number of copies of a state and
practical limitations on measurement times require the efficient use of
resources.

A critical component for our goal is the quantum pulse
gate (QPG) [20–22], which can perform projections of a random input
on tailored time-frequency modes. It is fed by spectrally shaped gating
pulses to select time-frequency modes from the input. By shaping
the gating pulse into all modes from a selected basis, one can fully
scan a random input in the basis. We stress that the QPG operates on
superpositions of time and/or spectral components. The QPG is already
a well-stablished device for projective measurements on the temporal
domain and its complete tomography has been performed [23].

We shall first introduce the basic elements concerning the kinematic
description of the electromagnetic field in the TF domain and the com-
pressive state tomography applied to arbitrary near-coherent (low-rank)
signal states encoded in this domain. After detailing the experimental
techniques, we present a novel set of compressive tomography results
for signals encoded in two broad classes of specral-temporal formats,
namely the TF pulsed modes [24–26] that encode both temporal and
spectral information, and frequency bins [27–33] that reflect solely the
spectral content. These results show that compressive characterization
of arbitrary optical states is feasible and achievable with only a meager
number of measurement settings.
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2. PHOTON TIME-FREQUENCY MODES

A. Kinematics
Although all the concepts we will use here apply to any state of light,
we restrict our attention to single-photon states, as they constitute our
main optical sources for all experimental demonstrations. For a fixed
polarization and transverse field distribution, a single-photon quantum
state can be expressed as the coherent superposition

|ψ〉 =
∫

dω ũ(ω) a†
ω |0〉 , (1)

where a†
ω is the standard creation operator and ũ(ω) is the complex

spectral amplitude of the wave packet. The state can alternatively be
expressed as

|ψ〉 =
∫

dt u(t) a†
t |0〉 , (2)

where the mode functions in the respective domains are Fourier trans-
forms of each other. Such a state belongs to the infinite-dimensional
Hilbert space spanned by the continuous bases {|t〉 ≡ a†

t |0〉} and
{|ω〉 ≡ a†

ω |0〉}. Both bases allow for a resolution of the identity∫
dt |t〉〈t| = 11 =

∫
dω |ω〉〈ω| , (3)

and their overlap is 〈t|ω〉 = eitω/
√

2π, confirming that they are
conjugate variables.

One can easily extend this formalism to describe mixed states in
the form

$ =
∫

dt′
∫

dt′′ |t′〉 u(t′, t′′) 〈t′′|

=
∫

dω′
∫

dω′′ |ω′〉 ũ(ω′, ω′′) 〈ω′′| ≥ 0 . (4)

Hermiticity imposes u∗(t′, t′′) = u(t′′, t′) and ũ∗(ω′, ω′′) =
ũ(ω′′, ω′), whereas positivity gives∫

dt u(t, t) = 1 =
∫

dω ũ(ω, ω) . (5)

Since $ encodes all information accessible in both domains, it is
in principle possible to explore the full spectral-temporal content of
a given signal by placing both time and frequency on equal footing.
The most suitable way to do this is by using the so-called chronocyclic
Wigner function [34–38], which is an adapted version of the original
idea of Wigner [39]. It is defined as

W(t, ω) = 2
∫

dt′ e2iωt′ 〈t− t′|$|t + t′〉 ,

= 2
∫

dω′ e−2iω′t 〈ω−ω′|$|ω + ω′〉 , (6)

with normalization
∫

dt′dω′W(t′, ω′)/(2π) = 1. The term “chrono-
cyclic” signifies the juxtaposed appearances of both time and frequency
variables.

A convenient TF encoding can be accomplished through basis
projections [40]. More specifically, by employing a finite set of states
∑d−1

n=0 |φn〉〈φn| = 11d that span a d-dimensional subspace, we may
define the d-dimensional state

$d =
d−1

∑
n,n′=0

|φn〉 〈φn|$|φn′ 〉 〈φn′ | . (7)

A handy basis to express this finite-dimensional state is the set of
Hermite-Gaussian (HG) modes [41–44] (|φn〉 ≡ |HGn〉):

〈t|HGn〉 =
1√

π1/22nn!
e−t2/2 H n(t) , (8)

where H n(() t) is the Hermite polynomial. In these modes, the Wigner
function is given by [45, 46]

W(t, ω) = 2 e−2 |α|2
d−1

∑
n,n′=0

(−1)n< $nn′
2n>

2n<

√
n<!
n>!

× |α|n>−n< e−i(m− n)θ L(n<)
n>−n<

(
4|α|2

)
, (9)

where $nn′ are the matrix elements of $ in that basis, L(µ)
n (y) is the

associated Laguerre polynomial, α = (t + iω)/
√

2 = |α| eiθ , n> =
max{n, n′}, and n< = min{n, n′}. For the HG modes, the Wigner
function reduces to

Wn(t, ω) = 2 (−1)n e−(t
2 + ω2)2

L n

(
2t2 + 2ω2

)
, (10)

that is, simple Laguerre-Gaussian functions.
Pulse shapers [47] can be used to generate pulsed modes of arbitrary

spectral-temporal content. As a special case, one can fashion pulses
that are well-enveloped only in the frequency domain. A specific type
of such pulses are frequency bins, where discrete spectra of narrowband
frequencies are selected to define their single-mode states. From the
spectral decomposition (4), the mode amplitude ũ(ω′, ω′′) of these
frequency bins takes the ideal form

ũ(ω′, ω′′) =
d−1

∑
n,n′=0

ũn n′ δ(ω
′ −ωn) δ(ω′′ −ωn′ ) , (11)

for a set of d frequency bands {ωn}d−1
n=0. The resulting d-dimensional

frequency-bin state derived from the second equality in Eq. (4),

$ =
d−1

∑
n,n′=0

|ωn〉ũn n′ 〈ωn′ | , (12)

thus has the Wigner function

W(t, ω) =
d−1

∑
n,n′=0

ũn n′ e
i(ωn −ωn′ )t δ(ω− (ωn + ωn′ )/2) . (13)

Although W(t, ω) is now plane-wave oscillatory in t and singular in
ω, as is expected from an overidealized model that has perfectly well-
defined frequency bands of zero width in the spectral domain, terms
in t and ω may be disregarded as they are auxiliary. Operationally, it
is the complex amplitudes ũn n′ that truly contain all purely-spectral
information about the frequency-binned system, and can hence be
easily represented by their positive matrix ũ = ∑d−1

n,n′=0 enũn n′en′
T in

some computational basis {en}.

B. Generalized measurements with the quantum pulse gate
An ideal QPG mode matched to the source acts on an arbitrary single-
photon input state $in according to [1]

$out = Qζ
θ $in Qζ †

θ . (14)

where

Qζ
θ = 11− |Aζ〉〈Aζ | − |B〉〈B|

+ cos θ
(
|Aζ〉〈Aζ |+ |B〉〈B|

)
+ sin θ

(
|B〉〈Aζ | − |Aζ〉〈B|

)
, (15)

where
|Aζ〉 = Aζ †|0〉 ≡

∫
dωζ(ω)a†

ω |0〉 (16)
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Fig. 1. The QPG implements a beam splitter operation between two
sets of modes {A} and {B}, where one user chosen input mode Aζ

is converted to an output mode B, while all other modes are transmit-
ted. Photon detection in the output mode then implements a projec-
tion of an input state $ onto mode Aζ .

is the source mode. This consists of a family of unitary transformations
on the single-photon state space composed of two nonoverlapping
frequency bands: one spanned by the input mode state |Aζ〉, and a
single TF mode |B〉 occupying the other. Note that this operation
describes a special quantum mechanical beam splitter, as sketched in
Fig. 1.

Given an input state with photon mean number N$, the mean photon
number in the output mode |B〉 of the QPG is

〈Nζ
$ 〉 = N$ η |γζ

$ |2, (17)

with η = sin2 θ the conversion efficiency of the QPG and γ
ζ
$ =

〈Aζ |$|Aζ〉 the overlap between the input mode |Aζ〉 of the QPG and
the input state $.

Only the part of $ overlapping with the QPG input mode is con-
verted to mode |B〉. Subsequent photon counting in this mode then
effectively implements a projection of $ onto |Aζ〉, where |Aζ〉〈Aζ |
is a projector of a measurement basis.

3. RANDOMIZED COMPRESSIVE TOMOGRAPHY

A rank-r state of dimension d, described by a positive unit-trace op-
erator $d, can be uniquely determined by (2d− r)r− 1 independent
parameters. On the other hand, a set of d[(2d− r)r − 1]/(d− 1)e
measurements generally cannot fully characterize such a state. For in-
stance, it has been shown that two bases can never fully characterize ar-
bitrary states of d = 2—the finite version of the Pauli problem [48, 49].
Nevertheless, one can still search for a set of M � O(d2) measure-
ment outcomes that can unambiguously reconstruct the set of states of
known rank r � d. We call such a measurement set informationally
complete (IC). However, when r and all other information about $
are unknown to the observer, surmising that a fixed set of measure-
ments with an M� O(d2) would completely determine $d before a
tomography experiment generally leads to unreliable reconstruction
results.

In this section, we introduce a randomized compressive tomography
scheme (RCT) for characterizing an unknown low-rank time-frequency
state $d of a finite dimension d and rank r � d. We show that without
resorting to any ad hoc assumption about $d, we can still determine
whether a given number M� O(d2) of randomly-chosen orthonormal
bases can uniquely reconstruct $d. Each basis is denoted as Bk =

{|bk0〉, |bk1〉, . . . , |bk d−1〉}, with ∑d−1
l=0 |bkl〉〈bkl | = 11. This scheme

is therefore universal, in the sense that with it, states of arbitrary time-
frequency modes can be compressively characterized using general
bases measurements that can be very reliably generated using the QPG,
as discussed in Sec. 2.B.

Fig. 2. Schematic figure of the iterative RCT scheme. The signal car-
rying the unknown state $ interacts with the QPG so that a randomly-
chosen basis is measured in the kth step. This gives a set of relative
frequencies that is combined with previous measurements. All k mea-
sured bases B(k) and their corresponding relative frequencies νk are
then processed numerically by first carrying out the ML routine to
obtain physical probabilities, and next subjecting the results to the
ICC algorithm that computes the completeness indicator sCVX using
two semidefinite programs (SDPs) (discussed in Appendix A). The
whole cycle repeats until sCVX drops below a certain small threshold
at k = KIC, implying that (B(KIC), νKIC

) is IC.

The RCT scheme is a bottom-up iterative procedure, in which
independently chosen measurement bases B(k) = {B1,B2, . . . ,Bk}
are measured and accumulated until the time-frequency state estimator
$̂d ≥ 0 is unique. When this happens, it implies that apart from $̂d,
there is no other state that is consistent with the measurements. More
specifically, in the kth iterative step, after a basis Bk is measured, the
accumulated bases set B(k) and corresponding relative frequency data
νk = (ν10, ν11, . . . , ν1 d−1, . . . , νk0, νk1, . . . , νk d−1)

> for these bases
(∑d−1

l=0 νkl = 1) are analyzed to see if these measurements are IC.
This procedure involves two following stages as illustrated in Fig. 2.

In the first stage, the column of raw relative frequencies νk are mapped
to the corresponding column p̂k whose elements p̂kl = 〈bkl |$d|bkl〉 are
physical probabilities obtained from some positive unit-trace operator
$d. This mapping is necessary to ensure that the analysis is physical.
For this, we may invoke the maximum-likelihood (ML) method [50–
54] that would give us the column p̂k that maximizes the likelihood
function describing the QPG measurement scenario over the physical
d-dimensional state space [55].

The second stage of RCT at the kth step is to find out if there is
more than one state that gives such physical ML probabilities pjk—the
informational completeness certification (ICC). If this were true, then
in principle, there will be convex set (Ck) of states with a nonzero
volume. The task is to deterministically figure out the value k = KIC at
which the volume of CKIC

is zero. To do this, we introduce an indicator
sCVX that monotonically decreases with the convex-set volume. When
sCVX,KIC

= 0, it can be argued easily that CKIC
is a single point, telling

us that (B(KIC), νKIC
) is IC [15]. The computation of sCVX can be

done with the help of semidefinite programming and is explained in
Appendix A.

4. EXPERIMENTAL TECHNIQUES

In our realization, we implement the QPG with a group-velocity
matched (GVM) sum-frequency generation in a periodically poled,
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Fig. 3. (a) Experimental setup. A Ti:sap-OPO laser system emits ultrafast pulses at the required wavelengths. The input signal at telecommunica-
tion wavelengths is spectrally shaped using a comercial shaper and the pump field is shaped using a home-built 4 f line shaper setup with an SLM
device. A delay line on the input field arm is used to match it temporally with the pump field for the QPG process. At the output of the QPG, un-
converted input and throughput pump are separeted from the output field with dichroic mirrors that were not depicted to simplify the sketch. The
output field is then filtered with a home-made spectral filter and sent to the APD. (b) Experimental realisation of the QPG. Input and pump fields
are coupled into the QPG waveguide device where the process’ transfer function selects the mode Aζ from the input state $ and upconverts it to
the output mode B. The transfer function ϕ(ωin, ωout) inside the QPG describes the relation betwen the input and output frequencies depending
on the phasematching function φ and the pump mode ζ. The pump amplitude at 1/e2 is plotted in red dashed lines as a reference.

35 mm long and 7 µm wide titanium in-diffused lithium niobate waveg-
uide. The 4.4 µm poling period grants quasi-phasematching at the
desired GVM wavelengths; 1541 nm for the input state $ and 857 nm
for the pump mode ζ. The GVM process is engineered so that the
output mode |B〉 at 554 nm is solely defined by the phasematching
function φ(ωin, ωout) of the process. This realizes the mode-selective
process described in Sect. 2.B.

The transfer function is then the product of the phasematch-
ing function and the pump mode envelope ϕ(ωin, ωout) =
ζ(ωpump)φ(ωin, ωout). It describes the relation between input and
output frequencies for the SFG process. An example of a transfer
function with a first-order Hermite-Gaussian envelope of the pump
mode is depicted in the inset in Fig. 3 (b). Only the parts of the input
state that overlap with the transfer function will be converted to the
output and detected with a single-photon detector. Hence, for any input
state, the QPG performs a projective measurement on the mode defined
by the pump.

The input field is shaped into the appropriate input states $in using
a fiber-coupled commercial spectral shaper (Finisar Waveshaper). The
output of the shaper is then coupled to the QPG in free space with
a lens. A delay line is used to match the arrival time of the signal
pulses to those of the pump at the QPG. The pump field is sent to a
home-built spectral shaper setup consisting of a holographic grating
(2000 lines/mm), a cylindrical mirror and a Spatial Light Modulator
(SLM) (Hamamatsu LCOS-SLM X12513-07) in a folded 4 f line con-
figuration. This allows to shape the pump envelope ζ into any base
component for the RCT measurements. The shaped pump pulses are
then coupled to the QPG through the same optical path as the input
field.

At the output of the QPG, the unconverted input and transmitted
pump fields are separated from the up-converted output with dichroic
mirrors. The up-converted green output field is then sent to a tunable
spectral filter consisting of a grating, a lens and a slit with a variable
width with a mirror on its back, in a folded 4f line configuration. The

filter is set to 30 pm FWHM to filter out the side lobes of the QPG sinc
phase-matching function [47] and to further increase the selectivity
of the mode-selective process. The filtered output is then sent to an
avalanche photon detector (APD) (ID Quantique) connected to a time-
tagger (Swabian instruments) to collect the measurement data.

The input states to be reconstructed are chosen to be either temporal
modes whose envelopes are HG functions or frequency bins of dimen-
sion d. The temporal modes have an spectral FWHM of 1 THz, the
frequency bins are 0.07 THz wide. The pump modes are then shaped
into the d-dimensional randomly rotated basis modes Bk of each in-
put state. Note that RCT exhibits compressive effects with any pump
modes, since the ICC procedure always decisively verify whether any
given measurement dataset is IC regardless of the unknown state. The
rotation uses randomly generated unitary matrices.

For every input state under investigation, the input field is projected
onto each basis mode of the M different randomly rotated bases in
individual measurements. The resulting counts νjk at the output B are
measured and stored. Every 10 measurements, the time delay between
signal input and pump is realigned automatically by maximizing the
mode-selectivity to account for drifts in the setup. To realize mea-
surements on mixed input states, we measure different inputs with the
same set of randomly rotated bases. We then mix the measured data
with appropriate weights in post-processing. The randomly rotated
bases implement a non-uniform sampling of the input state that ac-
complishes compressive sensing [56, 57]. In a sense, the QPG can
be considered a single-pixel camera for temporal modes. States with
temporal features much faster than the resolution of the single-photon
detector are reconstructed, by modulating the input signal with random
temporal masks. In addition, the use of compressed sensing facilitates
signal reconstruction with fewer measurements than a direct sampling
approach [58]. This is especially beneficial in situations in which a
signal must be reconstructed from a limited number of photons.
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Fig. 4. Reconstruction results for time-frequency states of d = 10. (a,b) The average drop in sCVX for each state rank r coincides with the
average rise in fidelity F . The 1-σ error regions are computed with 10 experimental runs per value of r. The value of KIC for which sCVX,KIC

= 0
steadily increases with r as it should. Whenever sCVX 6= 0, F is computed for $min (see Appendix A). (c,d) Sample Wigner functions for the
rank-one HG0 mode and a random rank-3 mixture of the HG modes ($r=3 = |HG0〉0.17〈HG0|+ |HG1〉0.70〈HG1|+ |HG2〉0.13〈HG2|) are
shown.

5. RESULTS

A. Time-frequency modes

The first class of low-rank TF states we shall use to demonstrate the
RCT scheme constitutes the HG modes and their statistical mixtures.
These are highly relevant as they closely approximate the eigenbasis
of parametric down-conversion processes [59]and have been shown to
be optimal for certain metrology tasks. In terms of their chronocyclic
Wigner function representation, states corresponding to the first three
HG modes, for instance, are expressed as

Wn=0(t, ω) = 2 e−y2
,

Wn=1(t, ω) = 2 e−y2
(2y− 1) ,

Wn=2(t, ω) = 2 e−y2
(2y2 − 4y + 1) , (18)

where y = t2 + ω2. These states are all rotationally symmetric in the
spectral-temporal content.

A total of ten HG basis modes, ∑9
n=0 |HGn〉〈HGn| = 1110, are

used to project $ onto a finite-dimensional subspace of dimension
d = 10. Random von Neumann basis measurements of the same di-
mension are generated with the QPG to collect measurement data for
the rank-one modes HG0, HG1, HG2 and HG3, and their statistical
mixtures. These basis measurements are parametrized by random uni-
tary rotations distributed according to the Haar measure [60]. Figure 4
shows the results for the different low-rank time-frequency states. For
the rank-one graphs in panels (a) and (b), the results are averaged over
experimental runs of all the four HG modes.

As the number of independent parameters characterizing a rank-r
state increases roughly linearly in r for r � d, the number of mea-
surement bases needed to uniquely reconstruct rank-r states should
also increase roughly linearly in r in this regime [16]. In other words,
on average, the number of bases needed to fully characterize rank-r
time-frequency states is O(r). Such a characteristic can be observed in

Figs. 4(a) and (b), despite the presence of statistical noise and experi-
mental imperfections in the measurement data. The results therefore
demonstrate the efficiency and robustness of RCT when applied to
real experimental scenarios. Chronocylic Wigner functions of sample
reconstructions are also shown in Figs. 4(c) and (d) for visualization.

B. Frequency bins
The second class of low-rank states that we consider here are frequency-
bin states. These are states defined by a discrete set of narrowband
frequency bins. The corresponding complex matrix ũ that dresses these
continuous frequency bases inasmuch as Eq. Eq. (11) is a positive
matrix that full information about a general state defined by these
frequency bins in the spectral domain.

In particular, we focus on 10-dimensional states supported by 10
pre-chosen frequency bins {|ωn〉〈ωn|}9

n=0. We generate four rank-
one states $ = |ψ〉〈ψ| that are superpositions of such bins, namely

|ψ〉 =


(|ω0〉+ |ω3〉+ |ω6〉)/

√
3

(|ω0〉 − |ω3〉+ |ω6〉)/
√

3
(|ω3〉 − |ω6〉+ |ω0〉)/

√
3

(|ω6〉 − |ω0〉+ |ω3〉)/
√

3

. (19)

For mixed states of higher ranks, we consider random statistical mix-
tures of the above four superpositions with random mixture probabili-
ties. The measurements used to probe all these states are again random
bases generated by unitary operators sampled uniformly from the Haar
measure.

Figure 5 gives the performances of RCT on the class of frequency-
bin states. The general behavior of sCVX as a function of the number
of bases measured, K, is consistent with that for the time-frequency
states, confirming the basic understanding that compressive methods
are system independent. The KIC values for r > 1 are on average
larger than the values in Fig. 4 owing to more significant experimental
noise present in these states, as commensurately reflected in the fidelity
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Fig. 5. Reconstruction results for frequency-bin states of d = 10, with technical specifications following those of Fig. 4. (a,b) The behaviors
of sCVX and F for each rank of $ or ũ follows similarly to those in Fig. 4. (c,d) Sample matrix plots of Re{ũ} for a rank-one frequency-bin
superposition ($ = |ψ〉〈ψ| with |ψ〉 = |ω0〉 + |ω3〉 + |ω6〉/

√
3) and a random rank-2 mixture of frequency bins (described by a ũ with

eigenvalues 0.73 and 0.27) are shown.

graphs of Fig. 5(b). The matrix plots of Re{ũ} that represents all
frequency-bin states present example reconstructions one would expect
in typical experiments.

6. CONCLUSIONS

We have demonstrated a versatile compressive quantum tomography
scheme that can characterize arbitrary near-coherent quantum states
in the TF domain using extremely few measurements. The method is
very robust and requires no spurious assumptions about the states: this
includes the degree of sparsity or coherence, that could most likely be
inconsistent with the actual implementation.

From a technical perspective our method allows for the efficient
characterization of the temporal behaviour of telecommunication light
at the single-photon level and can thus pave the way for many new
quantum technologies.

The great performance of the method largely relies on the flexibility
of the QPG, which has allowed us to implement linear optics single-
photon quantum operations in terms of the TF modes: the natural
variables to deal with these signals in the quantum domain. These
modes are compatible with waveguide technology, making them ideal
candidates for integration into existing communication networks. In
addition, they are not affected by typical medium distortions such as
linear dispersion, which renders them robust basis states for real-world
applications.

Through real experimental demonstrations, we showed that our com-
pressive scheme can perform complete reconstruction of any TF quan-
tum state using readily-accessible algorithms that are much more ver-
satile than the toolkits offered by conventional coherent spectroscopy.
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A. INFORMATIONAL COMPLETENESS CERTIFICATION

Whenever a given set of bases BL is not IC, then by definition, there
shall be (infinitely) many states corresponding to the physical ML
probabilities p̂L extracted from the relative frequencies νL of BL. More
precisely, there exists a convex set CL of states {$} that is consistent
with the constraints $ ≥ 0, tr{$} = 1 and 〈bkl |$|bkl〉 = p̂kl for all
1 ≤ k ≤ L and 0 ≤ l ≤ d− 1.

As L increases to L = KIC, the convex set CL → CKIC
eventually

becomes a single point containing a unique estimator that is close to
the unknown state provided that the number of photodetector clicks
N for each basis measurement is sufficiently large. The task of ICC
is to determine the value of KIC that this happens. For this purpose,
we note that since CL is convex, if both the minimum and maximum
values over CL of a strictly convex or strictly concave function of $ are
equal to each other, then it must be the case that CL is a single point of
size 0. This argument clearly applies also to any linear function of $.

This implies that a successful ICC involves the solution to the
following equivalently semidefinite programs [61]:
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ICC

Maximize and minimize fZ($) = tr{$Z}
subject to

• $ ≥ 0 ,

• tr{$} = 1 ,

• 〈bkl |$|bkl〉 = p̂kl .

Define sCVX = f max
Z − f min

Z and check if sCVX = 0.

Here Z is some fixed full-rank operator that is randomly chosen. This
is necessary to ensure that fZ has no plateau structure that would
violate the strict-convexity requirement. After obtaining the minimum
f min
Z and maximum f max

Z values of fZ, we may define sCVX = f max
Z −

f min
Z . Because of the convexity properties of the entire problem of

ICC, sCVX turns out to be a monotonic indicator of the size of CL. If
sCVX = 0, then CL is a single point with L ≡ KIC. In general, an
analytical understanding of the behavior of sCVX with the number of
measured bases k is apparently intangible. As an alternative, we present
a numerical exposition Sec. 5 for the spectral-temporal optical states
of interest.
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