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Abstract
Integrated, monolithic nonlinear cavities are of great interest in both classical and quantum
optics experiments due to their high efficiency and stability. However, a general analytic theory
of classical three-wave mixing in such monolithic systems, including both linear and nonlinear
regions with arbitrary finesse and non-zero propagation losses, is a challenging task. Here, we
derive such a model for any three-wave mixing process (second harmonic, sum frequency and
difference frequency generation) under the sole assumption of low single-pass conversion
efficiency. We demonstrate remarkable agreement between the presented model and the
experimentally obtained highly complex second-harmonic spectrum of a titanium-indiffused
lithium niobate waveguide cavity that includes both a linear and nonlinear section. We then
show the effect that reversing the linear and nonlinear regions has on the output spectrum,
highlighting the importance of system design. Finally, we demonstrate that the model can be
extended to include the effect of phase modulation applied to the cavity.

Keywords: nonlinear optics, monolithic cavity, three wave mixing, phase modulators

1. Introduction

Integrated devices offer greater stability, easier interfacing to
fiber networks and smaller footprint than their bulk counter-
parts [1]. The functionality of these devices can be exten-
ded by incorporating a wide variety of linear (e.g. directional
couplers and phase shifters) and nonlinear (e.g. second har-
monic generation stage and polarization converter) compon-
ents on the chip [2, 3]. This flexibility makes integrated non-
linear optical devices a key component of many classical and
quantum optical experiments.

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

In recent years, integrated monolithic cavities have gained
increasing interest, in particular in the quantum optics com-
munity [4–11]. They enable the generation of pure paramet-
ric downconverted states [12], optical frequency combs [13],
and squeezed states of light [14], and can be used as inter-
connecting blocks for interfacing with narrowband quantum
memories [15].

Such advantages come with a price, namely an increased
complexity of the integrated structure and less access to cer-
tain degrees of freedom to address this increased complexity.
In particular, many recent nonlinear integrated cavities report
the presence of a nonlinear section surrounded by electro-optic
[16] or thermo-optic and piezo-optic [15] modulators. This
allows for a fine-tuning of the resonance conditions, but results
in a more complex interaction between the three fields inside
the cavity that cannot be addressed using more standard bulk
dispersion compensation techniques, such as using a wedged
crystal [17, 18].

To date, the main method to study these systems is based
on the model developed by Berger in reference [19]. However,
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this model only considers type 0 second harmonic generation
(SHG) in a cavity comprising only a single nonlinear region,
and therefore it cannot be directly extended to the wider class
of nonlinear integrated cavities described above. An improve-
ment over Berger’s model is found in [15], where the authors
model a type 0 SHG cavity with thermo-optic modulators sur-
rounding the nonlinear region. However, the model derived
cannot be easily extended to different system configurations
(e.g. type II SHG or sum frequency generation). Moreover,
they neglect the impact of losses on the fundamental field, a
condition that is reasonable for their bulk system but that can-
not be generalized, e.g. to waveguide resonators.

In this paper, we expand the model of [19] and [15] and
provide a comprehensive analytical model of three-wave mix-
ing processes in nonlinear cavities under the non-pump deple-
tion approximation. This general model is valid for SHG, sum
frequency generation (SFG) and difference frequency genera-
tion (DFG) processes, and therefore can also be used to derive
useful insights into parametric downconversion (PDC) in cav-
ities. We derive the equation describing the spectrum of light
generated in the cavity through a chosen nonlinear process
and show that our model accurately reproduces experimental
measurements performed on titanium-diffused lithium niobate
waveguides.

2. Analytic theory

Let us consider the system of length Ltot = L1 +L2 +L3
sketched in figure 1, composed of a nonlinear region of length
L2 surrounded by two regions without nonlinearity of length
L1 and L3. Two input fields E1 and E2, at frequencies ω1 and
ω2, enter the system from the left facet and generate the field
E3 at frequency ω3 in the central nonlinear region. Due to the
non-zero facet (amplitude) reflection coefficients ρ1,2,3 (with
corresponding transmission coefficients τ 1,2,3), the three fields
interfere with themselves as they propagate back and forth
through the sample. Therefore, the spectrum of the generated
field E3 will be the result of the phase-matching properties of
the nonlinear region as well as the resonance conditions of the
three fields, which we now aim to describe. An analytic solu-
tion for the spectrum E3(ω3) can be found under the assump-
tion that the input fields E1,2 are undepleted by the nonlinear
process. Removing this assumption is possible, but the solu-
tion requires a numerically based iterative approach [20].

We start by considering the evolution of the fields E1 and
E2, which enter the system from the left facet. Parameters per-
taining to the left facet are denoted by a superscript ‘left’,
while parameters pertaining to the right facet are denoted by
a superscript ‘right’. Under the non-depletion approximation,
the steady-state circulating fields E1,circ and E2,circ inside the
cavity, calculated at the left facet of the system, can be written
as a function of the input fields E1,input and E2,input as given by
the usual Fabry–Pérot resonance condition

Ej,circ =
τ leftj

1− ρleftj ρrightj e−2 iϕFP,j
Ej,input j= 1,2 (1)

where ϕFP,j is the complex phase factor acquired by the field j
over a single round trip of the cavity, which is given by

ϕFP,j = ϕj,1 +ϕj,2 +ϕj,3

ϕj,l = (βj,l− iαj/2)Ll l= 1, 2, 3. (2)

Here, βj,l = 2πnj,l/λj is the propagation constant of field j in
region l and αj is the intensity propagation losses of field j.
The refractive index of field j in region l is given by nj,l and
its wavelength is given by λj. We consider the propagation
constants in the three regions to be independent, allowing the
description of systems with active elements that can modify
the phase relationship between the fields, e.g. electro-optic or
thermo-optic modulators.

The next step involves tracking the evolution of the field E3

along a single round trip of the cavity. A second subscript on
the fields E1, E2 and E3 is used to denote their location in the
cavity, as illustrated in figure 1. Since we assume steady-state
conditions, we can relate the field after a single round trip to
the starting field. This leads to the following self-consistent
system of equations

E3,2 = E3,1e−iϕ3,1

E3,3 = NL(L2;E1,2, E2,2, E3,2)e−iβ3,2L2

E3,4 = E3,3e−iϕ3,3

E3,5 = ρright3 E3,4

E3,6 = E3,5e−iϕ3,1

E3,7 = NL(L2;E1,6, E2,6, E3,6)e−iβ3,2L2

E3,8 = E3,7e−iϕ3,1

E3,1 = ρleft3 E3,8

(3)

where

E1,2 = E1,circe
−iϕ1,1

E2,2 = E2,circe
−iϕ2,1

E1,6 = E1,circe
−i(ϕ1,1+ϕ1,2+2ϕ1,3)

E2,6 = E2,circe
−i(ϕ2,1+ϕ2,2+2ϕ2,3) (4)

are values of the fields E1 and E2 at the input of the nonlinear
section, in the forward (E1,2 andE2,2) and in the backward (E1,6

and E2,6) direction.
In equation (3), the notation NL(L;E1, E2, E3) has been

used to indicate the complex amplitude of the field E3 gen-
erated in a section L of nonlinear material, with initial condi-
tions E1, E2 and E3. In the case of SFG, where ω3 = ω1 +ω2,
the evolution of the field E3 can be evaluated by solving the
coupled system of equations

dE1

dz
=−α1

2
E1

dE2

dz
=−α2

2
E2

dE3

dz
= iγE1E2e

i∆βz− α3

2
E3. (5)

2
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Figure 1. Sketch of the system described by equations (3) and (4).

In equation (5), γ is the nonlinear coupling coefficient between
the three fields and includes constants such as the nonlinearity
of the system and the modal overlap between the three fields
[21], while ∆β = β3,2 −β2,2 −β1,2 −βG is the wavevector
mismatch with propagation constants as defined in (2). Here,
βG = 2π

Λ is the additional quasi-phase-matching grating vec-
tor, which needs to be considered in samples where the non-
linearity is periodically inverted, with period Λ.

The solution of equation (5) over a nonlinear region of
length L andwith initial conditionsE1,0,E2,0,E3,0 can be found
analytically, resulting in

E3(L) = NL3(L;E1,0, E2,0, E3,0)

= iγE1,0E2,0Lsinc

(
∆βL
2

)
ei

∆βL
2 e−

α3 L
2 +E3,0e

−α3 L
2 ,

(6)

where∆β is given by

∆β =∆β− i(α3 −α2 −α1)/2. (7)

The self-consistent system (3) and the phase-matching
equation (6) allow us to retrieve the value of the field
E3 propagating inside the cavity. Finally, we can propag-
ate the intra-cavity field E3 to the external fields out-
side the cavity via the amplitude transmission coeffi-
cients τ 3. The resulting electric fields can be described as
follows

Eout,right
3 = τ right3 τ left1 τ left2 E1,inputE2,input ·PM ·FP1 ·FP2 ·FP3·Φr

Eout,left
3 = τ left3 τ left1 τ left2 E1,inputE2,input ·PM ·FP1 ·FP2 ·FP3 ·Φl

(8)

with

PM= iγL2sinc

(
∆βL2
2

)
ei

∆βL2
2

FPj =
1

1− ρleftj ρrightj e−2 iϕFP,j
, j= 1,2,3

Φr = e−i(ϕ1,1+ϕ2,1+ϕ3,2+ϕ3,3)

×(1+ρright1 ρright2 ρleft3 e−i(2ϕ3,1+ϕ1,2+ϕ2,2+ϕ3,2+2ϕ1,3+2 ϕ2,3))

Φl = e−i(ϕ1,1+ϕ2,1+ϕ3,1+ϕ1,2+ϕ2,2−2ϕFP,1−2ϕFP,2−2ϕFP,3))

×
(
ρright1 ρright2 ei(ϕ3,2+2ϕ3,3)+ ρright3 ei(ϕ1,2+ϕ2,2+2ϕ1,3+2ϕ2,3)

)
(9)

Equations (8) and (9) represent the main result of our
work. In writing equation (8), the different factors determin-
ing the spectrum of E3 outside the cavity have been separated
according to their source: the term PM represents the (single-
pass) phase-matching spectrum of the nonlinear section L2, the
terms FP1/2/3 represent the contributions of the Fabry–Pérot
cavities of the three fields, and the terms Φr/l represent the
interference between the forward and backward generated E3

fields. In the next section, we show how this model accurately
models the response of a real cavity system.

3. Application to a real system

Here, we model the spectral properties of the double pass
second harmonic cavity system presented in [16]. The device
consists of a∼2 cm-long waveguide comprising a∼1 cm-long
unpoled region with an electro-optic phase modulator on the
left (input) side followed by a ∼1 cm-long poled region for
second harmonic generation pumped at 1540 nm on the right
(output) side.

Dielectric coatings are deposited on the waveguide facets,
such that the waveguide acts as a high-finesse resonator for the
fundamental field and a double-pass structure for the second
harmonic field. The input facet is chosen to have a 70%
(intensity) reflectivity for the fundamental field and a high
reflectivity coating for the second harmonic, while the output
facet has a high reflectivity coating for the fundamental field
and an anti-reflection coating for the second harmonic field.
The measured values for the reflection coefficients ρ and the
propagation losses αFF for the fundamental field are summar-
ized in table 1. The losses αSH of the second harmonic field
are difficult to characterize as the waveguide is multimode at
this frequency and thus they are assumed to be twice as high as
the fundamental losses. We also note that, due to the double-
pass configuration, the second harmonic losses will only have
a minor impact on the output spectrum of the device.

Under these assumptions, it is possible to calculate the
phase-matching spectrum of the waveguide cavity using

3
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Table 1. Values of the reflection coefficients and fundamental losses
used to model the system presented in [16].

ρleftFF ρrightFF ρleftSH ρrightSH αFF αSH

0.833 0.998 0.998 0.1 0.25 dB cm−1 0.5 dB cm−1

Figure 2. Measured phase-matching spectrum of the double-pass
SHG device reported in reference [16] and its theoretical model
found using equation (8). The inset shows the longitudinal modes of
the generated SH field, the spacing of which is given by the free
spectral range of the SH cavity.

equations (8) and (9). A comparison between the measured
phase-matching spectrum and the theoretical model is shown
in figure 2. Our model can capture remarkably well most of the
characteristics of themeasured spectrum, namely, the position,
the width and the complex envelope structure of the interfer-
ence pattern. The discrepancies between the theoretical and
the measured spectra arise from the difficulty in estimating
the exact length of each section and from the inhomogeneit-
ies present in the sample. More specifically, errors in estim-
ating the length of the different sections will affect both the
free spectral range of the system and the interference between
the three waves, while it is known that waveguide inhomo-
geneities may lead to an asymmetric phase-matching profile
[16, 22, 23].

The theory developed in the previous section allows us to
investigate the impact that system design has on device per-
formance. As an example, we investigate the impact that swap-
ping the order of the phase modulator and the nonlinear region
has on the output spectrum. The resulting phase-matching
spectra are shown in figure 3. We can see that the spectrum
of the sample with the phase modulator before the nonlinear
region (as is the case for the system presented in [16]) is char-
acterized by a periodic modulation of the envelope, which is
absent in the opposite configuration. This is due to the fact
that in this case the phase modulator is placed between the
SH field that is generated in the reverse and the forward dir-
ection, noting that nearly all the SH field exits the sample at
the right mirror. Therefore, driving the phase modulator also
varies the interference conditions between these two waves,

Figure 3. Expected phase-matching spectra for the sample
presented in [16] and modeled with the parameters reported in
table 1, depending on the position of the phase modulator with
respect to the nonlinear region.

Figure 4. Predicted shift of the phase-matching spectrum with
various voltages applied to the electro-optic modulator for the
sample presented in [16] and modeled with the parameters reported
in table 1.

leading to regions of destructive interference. This reveals that
the resonance conditions in the first configuration are much
stricter and, depending on the application, may impact device
performance. This highlights the importance of careful design
and modeling of these systems.

Finally, this model also allows us to calculate the effect that
driving the phase modulator has on the output phase-matching
spectrum. This is achieved by writing the refractive index of
the fields in the first region, i.e. where the electro-optic modu-
lator is located, as

n(V) = ne−
n3e
2
r
V
d
Γ (10)

where r is the electro-optic coefficient addressed by the phase
modulator (in this case, it corresponds to r33 = 30.8pm/V), V

4
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is the voltage applied to the electrodes of the modulator, d
is the distance between the electrodes, n is the extraordinary
refractive index of the waveguide in the absence of any elec-
tric field, and Γ is the overlap integral between the field of the
modulator and the one of the guided mode.

When a non-zero voltage is applied to the modulator, the
phase of both the fundamental and second harmonic fields var-
ies, thus changing the interference conditions inside the cavity.
This results in a shift in the position of the resonance peaks of
the structure as well as a variation of the maximum intensity of
the generated light due to the complex interaction of the three
fields inside the resonator as their phase relationship is altered
by the driven modulator. This is illustrated in figure 4 for three
different applied voltage levels.

4. Conclusions

In this paper, we have presented a general analytic theory of
an integrated cavity comprising linear and nonlinear sections
under the sole approximation of no pump depletion. The
presented model is general and can be applied to any type
of collinear three-wave mixing process— both in bulk and in
waveguides. We have demonstrated that it accurately repro-
duces experimental data and shown its capabilities in model-
ing the effect of integrated modulators on the phase-matching
spectrum of the device. This model constitutes a fundamental
step toward the understanding and optimization of the per-
formance of a wide variety of new, complex resonant nonlinear
devices for both classical and quantum optics applications.
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