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1.  Introduction 
 
Equations of State (EOS) for a given thermodynamic system are usually considered to 
represent relations between the pressure, p, the volume, V, and the temperature, T, in 
the form p = p(V,T) or V = V(p,T). In most cases only the isothermal relations p =  
pT(V) or V = VT(p) are studied experimentally. Therefore in most cases only 
"parametric" EOS forms are discussed, in which the experimentally determined 
parameters for the volume V0(T), for the bulk modulus K0(T) and for its first and higher 
order pressure derivatives 0K′ (T), 0K′′ (T), …., represent the values for ambient (zero) 
pressure at the given temperature T. Different isotherms are thereby represented usually 
by the same parametric EOS form with only different values for V0(T), K0(T), 

(T),…. 0K′
     A question often asked is, which analytic form should be used for a parametric EOS, 
and what are the differences between different common analytic forms? These and 
similar questions will be discussed together with a review of the most common 
parametric EOS forms for solids in section 2. 
     More generally, however, the rigorous definition of an EOS starts from 
thermodynamic potentials (Gibbs functions) like the (Helmholtz) free energy, 
F(V,T,N,…) or the (Gibbs) free enthalpy, G(p,T,N,…), or the internal energy, 
U(V,S,N…), or the enthalpy H(p,S,N,…), in which N represents the total particle 
number, S stands for the entropy and the dots leave space for other thermodynamic 
variables like uniaxial stress or strain, electric and magnetic field strength and electric 
or magnetic polarisations. One should note that the functions F, G, U, and H are 
"thermodynamic potentials" giving complete characterisations of the "system" only with 
respect to "canonical" variables as given in their definitions above. All the partial 
derivatives also known as Maxwell relations define pairs of canonical variables: 
 p(V,T) = - ∂F(V,T)/∂V⏐T         S(V,T) = - ∂F(V,T)/∂T⏐V 

                            V(P,T) =   ∂G(p,T)/∂p⏐T           S(p,T)  = - ∂G(p,T)/∂T⏐p 

 p(V,S) = - ∂U(V,S)/∂V⏐S         T(V,S)  =   ∂U(V,S)/∂S⏐V 

 V(p,S) =   ∂H(p,S)/∂p⏐S            T(p,S)  =    ∂H(p,S)/∂S⏐p
Just for clarity, the thermodynamic variables have been restricted here to the canonical 
pairs p-V and S-T.  
     Like p = p(V,T) all the other Maxwell relations can be considered as "equations of 
state" in a more general sense: the system, or in other words the material, determines the 
special form of the EOS, not only for p = p(V,T) but also for any of the other relations, 
and each of these Maxwell relations gives only a partial description of the 
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thermodynamic system. To recover from the p(V,T)-EOS the thermodynamic potential 
F(V,T) requires additional knowledge about the (caloric) S(V,T)-EOS and in addition 
one reference point for F(V,T) to fix one remaining constant of integration.  
    These general relations between "equations of state" and thermodynamic potentials 
are elaborated more or less clearly in any of the standard textbooks on statistical 
mechanics and thermodynamic. My favoured author for this subject is G. Falk [1]. 
     The link from the p(V,T)-EOS to a quantum mechanical description of the many 
body system is provided by the partition function Z(V,T) = exp(-F(V,T)/(kT)) and the 
use of this link will help us in section 3 to go beyond a parametric p(V,T)-EOS 
formulation. This approach is usually related to the "Mie-Grüneisen" approximation. 
The advantages as well as the limitations of this MG-approximation are worked out in 
section 3, which forms the basis for a software package to fit in a self consistent way 
not only several isotherms on the basis of ambient pressure data for V0(T) and K0(T) but 
also by including specific heat data Cp0(T) (and if available also thermal expansivity 
data α0(T) ). In this way the physical background for the dependence of the "thermal 
pressure" on volume and temperature is explored and the volume dependence of 
parameters like the Debye temperature θ(V) and some extra anharmonicity parameter 
A(V) are determined to be used in a second software package for the forward 
calculation of not only different p(V,T) isotherms but also all the other thermo-physical 
properties mentioned so far. The details of these software packages are presented in 
section 4. Section 5 is devoted to a critical discussion of the advantages and limitations 
of the present approach. 
 
 
2. Parametric EOS forms 
 
2.0 GENERAL REMARKS 
 
Many different parametric EOS forms have been listed and discussed in the literature 
[2-10]. Therefore only a few specific aspects of the most common forms are discussed 
here with special attention to the question as to whether there is any special advantage 
in one of these forms with respect to the others. 
    For instance it can be a special advantage for some applications if the form can be 
inverted analytically from p(V) to V(p). However, none of the "invertible EOS" forms 
given in the literature [10-14] and discussed in the next section 2.1 gives a finite value 
for the cohesive energy upon integration, and this is considered as a serious deficiency. 
     On the other hand EOS relations derived from finite strain theory, discussed in 
section 2.2, result in finite values for the cohesive energy only if the definition of the 
strain ε = (1-(V/V0)n/3)/n has n < 0  keeping the generalized strain finite at infinite 
expansion (V/V0 → ). With  n = -2  one obtains the well-known Birch-Murnaghan 
equation [15], which is compared with other forms from finite strain theory in section 
2.2. 

∞

     A third approach, discussed in section 2.3, starts from "effective" two-body 
potentials, well known from atomic and molecular physics. These forms always imply a 
finite value for the cohesive energy, but mostly do not provide a series expansion with 
as many free parameters as needed for accurate representations of the experimental data. 
Without the modification by a series expansion, none of these forms deserves the label 
"universal" and, as shown in the comparison of the different parametric forms in section 
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2.4, the "universal EOS" promoted by Vinet et al. [16] is not only limited by its few free 
parameters but also by the fact that it is "universally" wrong at strong compression, 
because it diverges with respect to the well known limiting behaviour for all kinds of 
solids at very strong compression [7,8,10,17-20]. This observation leads to new, more 
reasonable, forms presented in section 2.4. 
 
2.1 INVERTIBLE EOS FORMS  
 
Murnaghan [11,12] derived the most commonly used invertible EOS form: 
     0K

0 0 0p (K / K ) ((V / V) 1)′′= ⋅ −    or   01/ K
0 0 0V V (1 (K / K ) p) ′−′= ⋅ + ⋅                           (1) 

This form is called here MU2 and can be obtained by integration from the bulk modulus  
                                                                                                          (2) 0 0K(p) K K p′= + ⋅
with the assumption that  is constant or K(p) is a linear function of pressure. This 
assumption is reasonable for moderate compressions of a few percent, but leads rapidly 
at strong compression to large discrepancies either in the fitted values for and  
with respect to the correct zero pressure values, or in extrapolations on the basis of the 
correct zero pressure values for  and 

0K′

0K 0K′

0K 0K′  with respect to the experimental p-V-data. 
     A slight improvement is obtained if one allows for a finite value of the next higher 
order pressure derivative 0K′′  in this series expansion, which results [13] in the 
invertible (third order) Freund-Ingalls form FI3: 
     [ ]1 c

0p 1/ b exp((1/ a) (1 (V / V ) ) 1= ⋅ ⋅ − −          or            (3) ]c0V V 1 a ln(1 b p)⎡= ⋅ − ⋅ + ⋅⎣
with 0 0 0a (1 K ) /(1 K K K )′ ′ 0′′= + + + , 0 0 0 0b (K / K ) K /(1 K )′ ′′ ′= − +  and 

 another third order invertible EOS form has 
been derived by a different assumption about the pressure dependence of the bulk 
modulus [14] with the additional parameter 

2
0 0 0 0 0 0 0c (1 K K K ) /(K K K K )′ ′′ ′ ′= + + + − ′′

β : 
       0 0 0K(p) K (1 p K /( K ))β′= + ⋅ β ⋅                             (4) 
Upon integration one obtains the form BC3: 
        [ ]1/(1 )

0 0 0 0p K ( / K ) (1 (1 ) (K / ) ln(V / V )) 1−β′ ′= ⋅ β ⋅ − −β ⋅ β ⋅ −                                      or                               

                                              (5)  1
0 0 0V V exp /((1 ) K ) (1 (1 p K /( K )) )−β⎡ ⎤′ ′= ⋅ β −β ⋅ ⋅ − + ⋅ β ⋅⎣ ⎦0

in which  sp 0 0p K ( / K )′= − ⋅ β  and sp 0 0V V exp[ /((1 ) K )]′= ⋅ β −β ⋅  have been described as 
pseudo-spinodal  pressure and volume that characterise an instability at psp < 0. 
    None of the forms MU2, FI3 or BC3 gives a finite value for the cohesive energy upon 
integration to V → ∞ and the limiting behaviour at strong compression is not improved 
by FI3 or BC3 with respect to MU2. Therefore these forms are only useful for very 
moderate compressions (or expansions) and lead rapidly to serious errors in any 
extrapolation of these forms beyond the range of moderate compression. 
 
2.2 FINITE STRAIN EOS RELATIONS 
 
If one uses a macroscopic theory of finite strain for the elastic deformation energy of a 
solid body, the corresponding "finite strain EOS" depends not only on the order of the 
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series expansion for the total elastic energy, but also on the definition of the strain, 
which is given in generalised form by 
                                                                                                    (6)                                              n / 3

0(1 (V / V ) ) / nε = −
Thereby V0  is the volume of the reference state, V is the volume under pressure, n = 2 
represents Lagrangian strain, and n = -2 Eulerian strain. Birch [15] preferred the 
Eularian strain for various reasons and the Lth order form BEL: 

                  
L

7 2 2 k
BEL 0 k

2

1p (3 / 2) K x (1 x ) (1 c (x 1) )−= ⋅ ⋅ ⋅ − ⋅ + ⋅ −∑ − −                                 (7) 

(The "order" L in my nomenclature [7,8,10]  is reduced by 1 with respect to the order of 
the strain energy form to count the free parameters as in the other forms of section 2.) 
The case of n = 0 on the other hand can be represented by the logarithmic or Hencky 
strain [9]:                                                                         (8) 0(1/ 3) ln(V / V )ε = − ⋅
which avoids the divergence to negative values of p at strong compression typical for 
the second order Birch form BE2 with 0K′ < 4. However no series expansion with this 
logarithmic strain gives finite values for the cohesive energy and neither the correct 
asymptotic behaviour at . This fact has been noticed already by Stacey [21], 
where the only EOSs with the correct asymptotic value 

V 0→
K 5/∞ 3′ =  were my forms [7,8, 

10] to be discussed under the labels HOL, H1L and APL below. 
     If one supposes that any "reasonable" EOS form should give a finite value of the 
cohesive energy, one must restrict the values of n in the strain relation to n < 0. The 
special choice of n = -2 selected by Birch [15] was obviously motivated by two 
observations: 
I. The first order form BE1 for the (quadratic) Eulerian strain results in a value of 

, which represent a good average value for the materials considered by Birch. 0K 4′ =
II. In fact, BE1 corresponds to an effective interatomic potential for dense packed 
monatomic solids with power laws for the repulsive and attractive potential parts with 
the powers 4 and 2 respectively. These values give a good compromise between a larger 
value for the repulsive term, a smaller value for the attractive term, and the requirement 
to avoid an unphysical turnover to negative pressures at strong compression. 
   The higher order Birch forms BEL may be considered as just resulting from modified 
effective power law potentials, which are discussed in detail in the next section, where it 
is also shown that BEL represents a good compromise between reasonable physical 
requirements and a simple functional form. 
 
2.3 EFFECTIVE POTENTIAL EOS FORMS   
 
Mie [22] introduced already in 1903 the idea that the balance between attractive and 
repulsive atomic forces determines the elastic properties of solids at ambient conditions. 
He proposed to use two power laws with just a steeper exponent for the repulsive force. 
This form for the interatomic potential can be summed over all lattice sites for dense 
packed monatomic solids without the need for any new parameters and results with 
three free parameters , m and n in a third order EOS labelled here Mi3: 0K
                          m / 3 n / 3

0 0 0p (3/ n) K (V / V ) (1 (V / V ) )−= ⋅ ⋅ ⋅ −                                         (9) 
This form gives  and for the cohesive energy  0K (2m n) / 3′ = −
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                         0 0 0 0
0

0

9 V K 9 V KE
(m 3)(m 3 n) (m 3)(3K m 3)

⋅ ⋅ ⋅ ⋅
= =

′− − − − − −
                                 (10) 

These relations allow both and 0E 0K′  to be determined independently. This form 
corresponds also to BE1 for m = 7 with n = 2.  One should note in addition that the Mie 
potential was later often referred to as the Lennard-Jones [23] potential. 
   Also at the beginning of the last century it was realised that the repulsive term of 
interatomic potentials is probably better modelled by an exponential term either in 
combination with a power law (Born-Mayer potential, [24]) or with a second 
exponential (Morse potential [25]) or a combination of one exponential with a power 
law series (Rydberg potential [26]). The use of an effective Rydberg-potential with only 
nearest neighbour interactions for a dense packed monatomic solid results in the 
effective Rydberg form (of second order) ER2, which is given most conveniently with 

 and 1/ 3
0x (V / V )= ER 2 0c (2 / 3)(K 1)′= −  by 

                         2
ER 2 0 ER 2p 3 K (1 x) x exp(c (1 x))= ⋅ ⋅ − ⋅ ⋅ ⋅ −                                           (

This 
11) 

form was published first by Stacey et al [3] and was later advertised as a "universal 

V K / c 4 V K /(K 1)′⋅ ⋅ = ⋅ ⋅ −           (12)                                                        
as lost. 

ted by the nonsense of a "universal EOS forms" I started with a modification 

EOS" by Vinet et al [16] without reference to either Rydberg or Stacey et al.. It was 
never admitted that this form represents just a reasonable approximation for a limited 
range in compression. The different behaviour of solids under strong compression, well 
known from many theoretical studies [17-20] was ignored by Vinet et al. Therefore the 
only "universal" property of ER2 is obviously the fact, that it is "universally wrong" at 
strong compression and "universally right" only in the trivial sense of a reasonable 
approximation for moderate compression like Hooke’s law for infinitesimal strain. In 
any case, serious scientists would use the word "universal" somewhat more carefully in 
any context. Finally Vinet et al. had anyhow to admit [27] that the ER2 form needs 
modifications for strong compressions and a series expansion in terms of (1-x)n in the 
exponent of ER2 was introduced as improvement, but this modification did not remove 
the critical divergence. On the contrary, the integrability of ER2 with its simple form for 
the cohesive energy 
 E 9= 2 2

0 0 0 ER 2 0 0 0

w
    Stimula
of the ER2 form, using the correct exponent -5 for the leading x-2 term in eq. 11. With 
this exponent -5 the divergence with respect to the Fermi gas behaviour at very strong 
compression was removed [28], but this form labelled H0L did not yet constrain the 
prefactor to the value of the Fermi gas. Therefore, one additional constraint was 
introduced in the later form H1L, constraining the parameter c in the exponent to the 
value 0 0 FG0c ln(3 K / p )= − ⋅ . The parameter 5/ 3

FG0 FG 0p a (Z / V )= ⋅  represents the 
pressu he total electron num ) volume 0V  and 

5a 0.02337GPa nm= ⋅  is a universal constant for the Fermi gas. 
the form H1L retained some similarity to

re of a Fermi gas with t ber Z in the (atomic

FG

     Due to the fact that  the modified Vinet 

 1−

form, it could not be integrated in closed form. It has therefore been replaced [8] by the 
form APL, an Adapted Polynomial expansion of the order L, given by 

L
5 k−

APL 0 0 k
2

p 3 K x (1 x) exp(c (1 x)) 1 x c (1 x)⎛ ⎞
= ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ + ⋅ ⋅ −⎜ ⎟

⎝ ⎠
∑        (13) 
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whe  the 
(t ed form 

re FG0 )  constrains the form at very strong compression to
heoretical) Fermi gas behaviour. This series expansion allows for clos

ion and good converg

) ⋅

0 0c ln(3 K / p= − ⋅

integrat ence in fitting of experimental data. The parameters c2, c3, 
…..cL can be related to the different pressure derivatives of the bulk modulus at ambient 
conditions, 0K′ , 0K′′ , …, and to the cohesive energy 0E . For the first order form AP1 
one finds for instance [29]: 
      0 0K 3 / 3 c′ = +    and   ( )0c

0 0 0 0 0E (9 / 2) V K (2 )(1 c e E1(c )) 1(2 0c= ⋅ ⋅ ⋅ + − ⋅ ⋅ −     (14) 

with xponent the well-known e ial integral function t

x

E1(x) e / t dt
∞

−= ⋅∫ . 

The values for 0c  vary from 1 for the light metals to
Cs. Values around 5 are also found for all the rare in

 4 for the heavier metals with 7 for 
 gas solids [30]. S ce the first order 

relation (eq. 14) ives a strong correlation of 0K g ′  with 0c  one can expect typical values 
of 0K′  for the lighter metals in the range of 4, for the heavier metals in the range of 5 to 
6 and for the rare gas solids in the range o 6 to 7 which corresponds to a very 
reasonable first order correlation in contrast to the purely empirical assumption of 

0K 4′ = for the first order form BE1. Further details of this correlation and the explicit 
calculation of the cohesive energy up to the fourth order form AP4 are given in the 
co responding literature [31]. 
     Finally, one may recall that the higher order Birch equation BEL can also be related 
to a microscopic interatomic potential for densely packed monatomic solids. In this case 

f , 

r

the interatomic potential is given by a power series in 2k 3 (2 / 3) k 1
0x (V / V )− − − ⋅ −=  starting 

with the attractive term x-3 and ending with the highest power 2L 5x− − , which is repulsive 
only if the value for the corresponding cBEL in pBEL (eq. 8) is positive. cBE2 for the 
second order form BE2 is positive only for 0K 4′ > . Therefore 4, 0K′ <  corresponds in 
this case to the strange situation that the term with the highest (negative) power is an 
attractive term. This limitation of the Birch EL is discus ther below in a 
comparison of the different forms by the use of a special "linearisation scheme". 
 
2.4 COMPARISON OF LINEARISED FORMS   
 

form B sed fur

mon parametric EOS forms diverge 
der strong compression. To illustrate 

In the last section it was noted that most of the com
with respect to the expected behaviour of solids un
this divergence, one could take the logarithm ln(p/pFG) of the ratio between the pressure 
predicted by the given EOS form and the pressure of the corresponding Fermi gas 

5
FG FGop p x−= ⋅  for the ultimate asymptotic behaviour. Because this ratio becomes zero 

at ambient pressure, the logarithm would diverge like ln(1-x) at x → 1, in which 
 A finite value for a modified logarithmic ratio is obtained, if the 

diverging contribution ln(1-x) is subtracted from ln(p/p

1/ 3
0x (V / V )= .

FG) to obtain the linearised  
logarithm essure ratio: 
 FGln(p / p ) ln(1 x)η = − −             (15) 
Thisη becomes especially 

ic pr

simple for pAP2 due to the special constraint given by c0: 

( )AP2 0 AP2 1−           (16)  c x ln 1 c x( x)η = − ⋅ + + ⋅   
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The parameter AP2 0 0c (3/ 2)(K 3) c′= − −  is usually so small that the deviation of ηAP2  
om a linear variation ngefr over the whole ra  0 x 1≤ ≤  is n e got v ry stron . 

 solids show a ver with
1

     In fact many y "simple" behaviour  [7,8,10,28,32]  
AP2c 0= within the experimental accuracy. This means that the first order form AP  

gives in these cases a perfect representation of the experimental (and theoretical) data as 
shown by the straight line in the corresponding xη− − plot for Al in fig. 1 for example. 
This fig. 1 illustrates the following points: 
I. AP1 fits within the given uncertainties the data for Al perfectly over the entire range. 
II. Uncertainties estimated from 0K′∆  remain fini own by the "AP2 limits".  te as sh
III. The form BE2 with the same values for 0K  and 0K′  as AP1 diverges rapidly to  

 sam ion. larger  values, but ER2 using the e parameter values diverges in opposite direct
2 aIV. The form MU2 diverges even more strongly than BE nd ER2. 

 

0.0 0.2 0.4 0.6 0.8 1.0x
-2.5

-2.0

-1.5

-1.0

-0.5

0.0η Al
BE2
ER2
MU2
AP1
AP2 limits
KK72(SW)
NM88(SW)
MN91(SW)
GL94(XR)
MZ88(TH)
WD00(TH)
LR73(US)

 
Fig. 1: h-x-plot for Al with experimental shock wave (SW), X-ray (XR), and ultrasonic (US) data and 
theoretical value (TH) from the literature given in ref. [10]. 
 
Another situation is illustrated in fig. 2 for Na. Due to the fact that 0K 4′ <  in this case, 
BE2 diverges to negative values at finite compressions; ER2 shows the wrong curvature 

iverge

ray diffraction (XD), volumetric (VO) and ultrasonic data (US). Detailed 

theoretical EOS data for "regular" solids over extremely wide ranges in compression. A  

and diverges also rapidly. MU2 has the correct curvature, but d s even more 
rapidly.  
    A third situation with different curvature, typical for rare gas solids and molecular 
solids [8], is illustrated in fig. 3 for hydrogen with theoretical (TH), neutron diffraction 
(ND), X-
references are given in the original work [8]. ER2 is here appropriate for a wide range in 
compression as expected from the simple exponential repulsion typical for closed shell 
configurations with very weak (Van der Waals) attraction. BEL needs definitely higher 
order terms going beyond BE2. MU2 is reasonable only in a very limited range of 
compression, but AP2 fits perfectly to all the experimental and theoretical data given 
here for H2 at 0 K. 
     In conclusion, AP2 appears to be flexible enough to represent experimental and 
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0.0 0.2 0.4 0.6 0.8 1.0x

Na BE2
ER2
MU2η
AP2
AP2 limits
Wi96
AS85
VG71

-3

-2

-1

0

 
   
                        Fig. 2:  h-x-plot for Na with experimental data from the literature given in ref. [10]. 
 

0.0 0.2 0.4 0.6 0.8 1.0
-4

-3

-2

-1

0
H

X

η

ER2

AP2 BE2 MU2

CR81(TH)

BG89(TH)

MA90(TH)

IS83(ND)

SS88(VO)

HH94(XR)

WM73(US)

 
Fig. 3: h-x-plot for hydrogen with theoretical (TH), neutron diffraction (ND), X-ray diffraction (XD), 
volumetric (VO) and ultrasonic (US) data from the literature given in ref. [10]. 
 
further constraint with respect to experimental values for the cohesive energy requires 

bove its critical point for the α-γ-transition, taken as just one example for a heavy 

ce will also require more than 

only one more free parameter provided by the form AP3. 
 Anomalous EOS relations for solids with continuous electronic transitions such as Ce 
a
fermion system, require special treatment [10]. Furthermore, very precise 
representations of different isotherms of one given substan
just temperature dependent parameters 0V (T) , 0K (T)  and 0K (T)′  in a parametric AP2 
form [33], this point is treated in detail at the end of the next section. 
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3. Mie-Grüneisen EOS and anharmonic corrections 
 
3.0 GENERAL REMARKS 

 
 the parametric EOS forms discussed in the last section, tIn he effects of temperature are 

emperature dependent parameters without any theoretical 
 of these temperature dependencies. Therefore 

s. All 
ther excitations like magnons and lattice defects as well as mutual interactions like 

treated only by the use of t
justification r the special formfo
extrapolations beyond the range of the fitted data diverge rapidly in these cases. 
     Statistical thermodynamic methods for solids offer a rigorous basis for the 
calculation of all the thermo-physical properties from a thermodynamic potential, as 
discussed in the introduction. Effects of different approximations can be studied 
systematically. In this scheme one starts from the volume dependent ground state 
energy of the solid (usually related to the energy of the static ideal lattice Esl(V)) and 
adds successively contributions from different excitations. The first set of excitations is 
usually provided by the lattice vibrations or in quantised form by the phonon 
contributions. Electronic excitations are usually neglected in insulators. However, in 
metals significant contributions come also from the conduction electrons. Magnetic 
excitations as well as contributions from defects are mostly neglected, and in most cases 
all the excitations are treated as excitations of independent quasiparticles. This means 
that phonon-phonon as well as electron-phonon interactions are usually not taken into 
account. 
    The various steps from the Hamiltonian of an (idealised) solid via the partition 
function to the free energy of the solid have been worked out in many textbooks on 
solid-state physics and thermodynamics as mentioned in the introduction. The essential 
feature for the present discussion is only the fact that the total free energy F(V,T,N,…) 
can be split by these procedures into the ground state contribution of the static lattice 
Esl(V,N,…) and into additional contributions for the various types of excitations: 
 sl ph elF(V,T, N) E (V, N) F (F,T, N) F (V,T, N) ...= + + +                         (17) 
Fph(V,T,N) represents here the free energy of the phonons and includes zero point 
contributions. Fel(V,T,N) represents the free energy of the conduction electron
o
phonon-phonon or electron-phonon coupling are neglected for simplicity. The Maxwell 
relation for the calculation of the pressure T,Np F / V= −∂ ∂ preserves the separation into 
the three different terms: 
 sl ph elp(V,T) p (V) p (V,T) p (V,T)= + +                        (18) 
The same separation holds also for the inte ,T,N), the entropy S(V,T,N) 
and  the other thermodyna

rnal energy U(V
mic potentials discussed in the introduction. 

etric) EOS form 

 
The next steps in the description of the thermophysical properties of solids involve: 
I. The specification of the static lattice energy (for instance by a model for the 

teratomic interactions) or the equivalent selection of a specific (paramin
for the static lattice. 
II. A specific model for the excitation spectrum of the phonons. 
III. An additional model for the excitation spectrum of the conduction electrons. 
Point I was discussed already in the section 2. Points II and III are the subjects of the 
next subsections. 
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3.1 THE MIE-GRÜNEISEN APPROCH 
 
The simplest approach for a quantum mechanical treatment of the lattice vibrations and 

e corresponding temperature dependence of the specific heat was proposed by 
whole phonon spectrum could be 

presented by just one characteristic (average) frequency, later called the Einstein 

o

th
Einstein [34] in 1907. Einstein assumed that the 
re
frequency Eν  or in terms of a characteristic temperature the Einstein temperature 

E Eh / kθ = ⋅ν  with Planck’s h and Boltzmann’s k. 
     Grüneisen [35] realised that Einstein’s approach was not perfect. Like Einstein, he 
introduced nly one characteristic temperature (V)θ and in addition the corresponding 

ameter Grüneisen par
 Tln / ln Vθγ = −∂ θ ∂             (19) 
Furthermore, Grüneisen assumed that (V)θ de s only on volume and not on 
temperature at consta
ressure the rel

pend
nt volume. With this assumption he obtained for the phonon 

ation: p
 ph php (V,T) (V) 3 N kθ= ( (V) / V) u (T / )γ ⋅ ⋅ ⋅ ⋅ θ          (20) 
in which the scaled internal energy function u

⋅ θ

 = T/θ(V) . With the relations (18) to (20) he btained
ermal (volume) expansivity α(V,T) the well-known Grüneisen relation: 

θ n! 

 defined 
detailed an

in te

ph(t) was not fixed to Einstein’s form, but 
taken as a material characteristic function depending only on the dimensionless, scaled  
temperature variable t  o  for the 
th
 th T V(V,T) (V,T) V K (V,T) / C (V,T)γ = α ⋅ ⋅            (21) 
where KT(V,T) is the isothermal bulk modulus, CV(V,T) is the  molar (or atomic) heat 
capacity at constant volume, and V is the molar (or atomic) volume, respectively.  It 
should be noted that (V,T) (V)γ ⇒ γ  within the Grüneisen approximatioth

     In other words, 0(V (T))θγ  at ambient pressure increases only slightly with 
temperature due to the thermal expansion given by V0(T). Within the Grüneisen 
approximation, th (Vγ by the eq. 21 shows just the same small increase 0 (T),T)
with temperature. A alysis of the temperature dependent of thγ  at ambient 
pressure serves therefore often as a proof for the validity of the Grüneisen assumption. 
     If one rewrites eq. 20 rms of the internal energy for the phonons phU (V,T)  one 
can define another "thermobaric" Grüneisen parameter: 
 tb ph ph(V,T) p (V,T) V / U (V,T)γ = ⋅                        (22) 
Again, within the Grüneisen approximation  tb (V,T) (V)θγ ⇒ γ  and from nt of 
view eq. 22 is often cited as Mie-Grüneisen EOS. On t

 this poi
hand, eq. 22 is only a 

efinition of and can be cited as Mie-Grün s  EOS only wh  
T) (V,T)

he other 
d ei en en the additional tbγ
(essential) assumption holds that tb (V, (V)θthγ = γ = γ

bye frequency

 independent of 
temperature at constant volume! 
     In fact, a specific form for the phonon Density Of States (DOS) was not required in 
the Mie-Grüneisen approach. Only Debye [36] introduced a characteristic phonon DOS 
with a sharp frequency cut-off  at the De  Dν   or temperature Dθ and only 
the single Debye-Grüneisen parameter D Dd ln / d ln Vγ = − θ  determines all the volume 
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dependences of the different phonon frequencies iν also in this case. In other rds, also 
Debye assumed that all the (later called) "m rameters" 
 

wo
ode üneisen pa Gr

i i Tln / ln Vγ = −∂ ν ∂             (23)   
are represented by a single Debye-Grüneisen parameter Dγ . The Debye model leads 

erefore also to a Mie-Grüneise EOS Dθth n  with ht tbγ = γ = γ , oweve

ATION 

provement with respect 
gh approximation for 

e

γ  h r with a =
specially restricted form for the phonon DOS. 
 
3.2 DEFICIENCIES OF THE DEBYE APPROXIM
 
Obviously the Debye approximation [36] represents a major im
to the Einstein approximation, but its phonon DOS is only a rou
the situation in any real solid. As an example, fig. 4 [6] illustrates that the phonon DOS 
from a lattice dynamical calculation (LD) for MgO shows much more structure than 
corresponding the Debye phonon DOS. Typically, the centre of gravity (the "average" 
frequency) of this phonon DOS would be represented by the Einstein frequency Eν . In 
terms of the density of states, the Einstein model is represented in fig. 4 by a delta-
function located at Eν . 
    The deficiencies of the Debye model are represented in the literature [6] by 
temperature depend nt Debye temperatures indicating that the specific heat at low 
temperature gives a ffe di rent Debye temperature in the Debye function than the specific 
heat at high temperature. In other words, a fit of the low frequency section  
 

 
Fig. 4: Phonon DOS for MgO from the Debye approximation compared with lattice dynamical calculations 
(LD) from the literature [6] and with the corresponding Einstein frequency nE.  
 
of the phonon DOS by the Debye approximation results in an acoustic (or low 
temperature) Debye temperature Daccθ , which can deviate significantly from the high 
temperature value of the Debye-temperature D∞θ . This D∞θ  is usually related to the 
Einstein-temperature Eθ  by a facto  giving D E Dacc4 / 3∞r 4/3 θ = ⋅θ ≠ θ . This problem of a 
temperature dependent characteristic temperatu is just an artefact of the Debye model 
and can be avoided easily [37] by the use of a s  phonon DOS than 
provided by the Debye model. 
 

re 
lightly more realistic
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3.3 THE OPTIMISED-PSEUDO-DEBYE-EINSTEIN MODEL: opDE  
 
From the discussion in the last section, it should be clear that a slightly more realistic 

S of the Debye 
odel needs at least two characteristic frequencies or two related temperature 

representation of the phonon DOS in comparison with the phonon DO
m
parameters. In fact, it is common practice [37] to represent some part of the low 
frequency phonon DOS by a Debye approximation with the addition of one or several 
Einstein frequencies for the high frequency part. However, it is computationally more 
elegant to replace the Debye contribution by a "pseudo-Debye"  contribution [33], 
which corresponds to a bell shaped form of the phonon DOS and to a much simpler 
function for the phonon internal energy with the correct T and T4 behaviour at high and 
low temperatures, respectively. In a first attempt along this direction [33], a Simple- 
Pseudo-Debye form (SPD) was tested for the normalised internal energy of the phonons 

SPD phu U /(3Nk )= ⋅θ  with the normalised temperature t T /= θ   and neglecting zero 
point contributions for the moment: 
 4 3t /(a t)= +             (24) 
where 4 1/ 3a (5 / ) 0.3716= π =  with 

SPDu (t)
θ = Daccθ  results in a perfect fit of the Debye CV at 

peratures, but a = 0.17 rep esents a better compro a wider 
nge as shown in fig. better fit of the De ve

 more free paramet e dé-

ows a more fa
ehaviour at low temperatures and at first an nreas nable h mp at higher tem

v r mise for ery low tem
temperature ra 5. A bye CV is obtained, howe r, 
if one uses ers. Th  Pra Approximation 
 4 2 3

PA 0 1 2u (t) t /(a a t a t t )= + + +            (25) 
for instance with a0 = a3, a1 = 3a2 and a2 = 3a reproduces USPD, but  a0 = .068, a1 = a2 = 0 
result in a Modified-Pseudo-Debye form, UMPD, which sh vourable 
b u o u perature 
as illustrated in fig. 5 by the curve CMPD. As we will see later, this hump provides 
however an excellent fit of the Debye form CVD, when the pseudo-Debye form CMPD is 
combined with an Einstein term as optimised-pseudo-Debye-Einstein form (opDE). A 
direct fit of CPA related to the Pradé-form uPA results in a = 0.30, a1 = 0.07 and a2 = 0.38 
and in a very good representation of the Debye CVD, as shown in fig. 5, where the curve 
CPA just overlaps perfectly with Debye form.  
 

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5cv

T/Θ

MPD

opDE

SPD
Debye

 
 

Fig. 5: Normalised specific heat data for the Debye model, cVD = CVD/(3Nk) and for the three different pseudo 
Debye forms, cSPD, cMPD, and copDE, related to the forms uSPD, uMPD, and uopDE as explained in the text. 
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In comparison with the Debye approximation, the additional free parameters a0, a1 and 

u

 CopDE to the Debye CVD the frequency ratio 
/= ν ν = θ θ  is constrained by the selection of the weight g r the M

 =
 best fit for CopDE is obtained for g = 0.068 with a0 = .0434 and 

rom CVD is so small tha
p

a2 in uPA would allow us to fit also a more realistic phonon DOS than provided by the 
Debye model. However, for practical reasons, it is more convenient to combine an MPD 
contribution for low temperatures (low frequencies) with just one Einstein term for high 
temperatures (high frequencies): 
 4 3 f / t

opDE 0u (t, f ) g t /(a g t ) (1 g) f /(e 1)= ⋅ ⋅ + + − ⋅ −          (26)  
In the fit of the corresponding

E D E Df / fo odified-
Pseudo-Debye term to  

4 / 3/ 4)(1 g ) /(1 g)− −           (27) 
With this constraint, the

e deviation f

f (3

th t it can not be seen in fig. 5, but only in fig. 6, 
lowhich shows an enlarged difference t (opDE). For comparison, this plot includes 

also the result for a similar fit of a SPD term with an Einstein term (spDE) and the 
difference (PA) between CPA and CVD. 
 

0.0 0.5 1.0 1.5 2.0
-0.012

-0.006

0.000

0.006

0.012

∆cv

T/Θ

opDE

spDE
PA

 
 

Fig. 6: Differences of specific heat curves with respect to cVD  based on three different pseudo-Debye models 
i) based on the forms uopDE, ii) based on a similar SPD-Einstein model, and iii) based on the form uPA. 
 

solute 
 or smaller than 3o/oo for  This accuracy seems 

 EOS data,

oth th

phonon DOS, it is therefore most 
convenient to use the opDE approximation (eq. 26) with fixed the weight g = 0.068 and 

Two points should be noted: 
. The opDE approximation (eq. 26) represents the normalised Debye cv with abI

deviations smaller than 0.003 DT 0.13> ⋅θ
to be much better than the experimental accuracy for cv-values and the deviations for 

DT 0.1< ⋅θ  have no effect on the representation of  because the thermal 
pressure of the phonons is almost zero in this range. 
II. B e adapted SPD-Einstein form and the Pradé approximation show larger 
deviations from the Debye form as shown in fig. 5.  
III. For a real solid with deviations from the Debye 
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a fit of the Einstein frequency ratio f  (or a few fi) to the actual data. In this case θ 
corresponds still to θDacc and the fitted value of f gives for high temperature limit:   

bye model in a manner, 
hich is very convenient in practical applications to be discussed in section 4. However, 

which are not yet taken into 
ccount in the opDE approach: 

 4 / 3
D Dacc (g (1 g) f 4 / 3)∞θ = θ ⋅ + − ⋅ ⋅            (28) 

This means that a Mie-Grüneisen model can be applied to solids with phonon DOS 
deviating significantly from the Debye case; no (artificial) temperature dependence 
occurs in the characteristic (Mie-Grüneisen) temperature θ. 
 
3.4 DEFICIENCIES OF THE MIE-GRÜNEISEN MODEL 
 
With the opDE model, one can avoid the deficiencies of the De
w
the Mie-Grüneisen model has also some minor deficiencies, 
a
I. The Mie-Grüneisen approach considers only the volume dependence of one 
characteristic (average) frequency k / hθν = ⋅θ  by the corresponding θγ . Differences in 
the mode Grüneisen parameters can be taken into account in the opDE model by 
different mode Grüneisen parameters for θDacc and ∞θ  (eq. 28) or, in other words, by the 
use of one (or several) volume depe  fndent f (or

e

i). In cases like Si and Ge with negative 
acoustic mode Grüneisen parameters, this could be an interesting application for a 
modified opDE model; however, in most cases these effects are much to small to show 
up in the thermal pressure (within the given experim ntal accuracy). 
II. For minerals [37] or other solids with complicated phonon-DOS an extended opDE 
model with several fi and corresponding iγ  could be of interest to include differences in 
the mode-Grüneisen parameters for the acoustic and the different optical branches; 
however, in the present approach these modifications are considered to present only 
minor changes.   
III. Explicit temperature dependencies in he phonon frequencies (at constant volume)  t

i i Va ln / T 0= ∂ ν ∂ ≠ represent "intrinsic" anharmonic contributions [38], which are not 
taken into account by the usual Mie-Grüneisen model. These contributions can lead to 
new effects, which can be treated in the following way: 
     This explicit anharmonicity (in addition to the anharmonicity treated already in the 

ximation by finite values for the mode Grüneisen parameters) 
shows up first of all in deviations of the specific heat C
quasiharmonic appro

s). Recently [30,39,40] it was 

T, V) /(3Nk (V))⋅ θ  

v at high temperatures from the 
classical Dulong-Petit value (3Nk for monatomic solid
shown that an average explicit anharmonic contribution can be included to first order as 
a deviation from the Mie-Grüneisen model by replacing θ(V) by a temperature 
dependent "anharmonic" 
  a (V,T) (V) (1 A u(T / (V)))θ = θ ⋅ − ⋅ θ            (29)  
where u represents the quasiharmonic thermal contribution of the phonons to the 
internal energy in normalised form: 
  u(t) U (=           (30) qh

with t = T/θ(V). The volume dependence A d ln A / d ln V 0γ = − ≠ of the anharmonicity 
parameter A is often neglected. However, if one works out the effects of A and  on Aγ
all the th ds termodynamic relations [40] one fin hat 
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      tb A(t) A u(t)θγ = γ − ⋅ γ ⋅             and       A u(t)      (t) 2 Aθ thγ = γ − ⋅ ⋅

 temperature dependence. In other 
s, t ie-Grün r

γ ⋅               (30) 
One may notice that θγ  keeps its pure volume dependence (by definition), but both 

tbγ and thγ  are modified by some extra explicit
word elation he M eisen tb thθ  is violated by A 0γ ≠ . This means that γ = γ = γ
an explicit anharmonic contribution with constant A does not yet violate the Mie-

neisen relation; however, A 0Grü γ ≠  goes beyond the Mie-Grüneisen approach. 
     The effects of this explicit anhar  finally worked  the evaluation of 
experimental data with the software discussed in section 4. In metals, effects of this 
explicit anharmonicity are mas  to some extend by thermal contributions from 
conduction electrons. Therefor se effects have to be considered also in any detailed 

monicity are out in

ked

electrons to the heat capacity in "normal" metals is 

e, the
analysis of EOS data for metals. 
 
3.5 THERMAL CONTRIBUTIONS FROM CONDUCTION ELECTRONS 
 

he contribution of conduction T
given in many textbooks in the form of a free electron approximation by 

 2C Nk ( / 2) (T / T ) ce F
∗= ⋅ π ⋅            (32) 

aling with the 
 of conduction electrons per atom

where N represents the number of atoms and *
F F ceT T / n=  is an effective Fermi 

temperature, which is related to the actual Fermi temperature TF by sc
number  nce. In "normal" metals, *

FT  is very large with 
respect to the melting temperature which means th  a small contribution to 
the total heat capacity at high temperatures in these cases; only at very low temperatures 
does C

at Cce gives

ce dominate over the phonon contribution, which decreases as T3. In "heavy 
fermion systems" *

FT  may become smaller than the melting temperature and eq. 32 
needs then some modifications at elevated temperatures. In other words, these cases 
may need special attention and are excluded here. The contribution of the conduction 
electrons to the ther l pressure depends on the value of *

ce Fd ln T / d ln Vγ = − , which is 
known only for a few metals [41]. For a Fermi gas of free electrons FG 2 / 3γ = ; 
however, for real metals positive and negative values of about this magnitude can be 
expected [41]. With these values of ce

ma

γ  for "normal" glect the 
possible contribution of the conduction electrons to the thermal pressure; h n 
the evaluation of shock wave data, the conduction electrons act like a heat sink and their 
effect on the temperature along the shoc  Hugoniot cannot be neglected [41]. 
 
 
4. Software for the calculation and fitting of EOS data 

  

metals, one can
owever, i

k

.0 THE SCHEME 

e not only the EOS data but 
hysical properties by a state-of-the-art representation of the free 
 thermodynamic potential of the system) with a minimum number 

f free parameters. This approach needs the following parameters: 
 

 ne

4
 
The present program is based on the intention to calculat
also all the thermop
nergy F(V,T,N) (ase

o
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I.    For the energy (and pressure) of the static lattice 
I.1 The cohesive energy contribution                       : E0sl
I.2  The equilibrium volume per atom  : V0sl
I.3 The corresponding bulk modulus      : K0sl

: 0slK′I.4 its pressure derivative   

trons in the cell volume V0sl) 

 
erature θ ac   

 θ                      
II.3  

 ameter  A 
           

           

I.2 The Grüneisen parameter of    : γce 

M
number per unit ce

ro pressure  

.2 The Grüneisen parameter of  T   : γ

tial parameters (I.1-I.4 and II.1-II.5) in the 
ies including the p(V,T) - EOS over the 

nly 8 parameters are needed. 
 of phase transitions from 

e presently described low-pressure phase to possible high-pressure phases. For these 

arameters 
sted above. A second program TEOSfit is use to determine most of these parameters 

0(T) and Cp0(T). Both programs are written in 
athcad 2000i and can be downloaded from the website www.EOSdata.de

I.5 the atomic number for APL : Z 
(APL for compounds needs Z as total number of elec
 

II. For the phonon contributions     
II.1 The acoustic Debye temp  : c = θ D

II.2   The Grüneisen parameter of    : γθ  Dacc

For D Dacc/∞θ θ  a frequency ratio   : f   
II.4 The explicit anharmonicity par  : 
II.5 The Grüneisen parameter of A      : γA 

 
III. For the conduction electrons: 
III.1 The ermi temperature       : *Teffective F         F

2 *

 
         (for Cce/T = ce F( / 2) R / TΓ = π ⋅ )   

*
FT  II

 
IV. The atomic mass number                              :  
  (or the mass ll) 

e bV. For th oundary of the solid-state region: 
V.1 The melting temperature at ze  : Tm0

V m                    m0 

 
For an insulator this implies 9 essen
representation of all the thermo-physical propert
entire region of stability for the solid. For the EOS alone o
The cohesive energy is included here only for later discussions
th
considerations space is kept for an additional parameter D0 describing the energy 
difference between the minima of the static lattice energies of the two phases. 
 
4.1 DETAILS OF THE PROGRAM 
 
    The present program package includes one program TEOScalc for the calculation of 
thermo-physical properties from the input file TPpropE that contains all the p
li
from input data for V0(T), α0(T),  K

. This M
website provides also the data file TPpropE, which lists the 18 parameters at present 
just for a few elements, but we are working on the completion of this list and anyone 
using this program is encouraged to send us new data, which we would implement with 
reference to the authors on a second sheet.  
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    If one uses the program for the first time, one finds that it is set up at present for 
Argon. For other the 18 for Argon in ZA:=18  must be replaced by the atomic number 
for the desired element to read the corresponding data from TPpropE. Later in the 
program various steps are marked, where one can select temperature and pressures for 
the calculation of any isotherm or isobar. When the cohesive energy E0 is given for the 
element, the program determines at first all the parameters for an AP3-type isotherm by 
the use of the input parameters Z, Vr, Kr, Kr′  for the reference state (pr, Tr) (usually 0 
GPa and 0 K) and E0 is used to calculate the third parameter c3 with a simple 

approximation for the function  tE1(x) e / t dt
∞

−

x

= ⋅∫  provided by Segeletes [42]. The 

volume dependence of θ  and θγ  is calculated by the use of the Barton-Stacey form 
[43], which we consider most app  reasons. With ropriate for many θγ , θ , and f the 
phonon pressure due to zero point ed and use in the determination of 
the parameters V

 motion is calculat
0sl, K0sl and K, 0sl′ for the static lattice. V0(T) is determined from the 

reference EOS with the corresponding phonon pressure calculate i the opDE 
approximation. With V

d n 
0(T) and the phonon pressure from the opDE approximation 

K(T,V) and K0(T) are also calculated. It should be noted that the common 
approximation rK

0 r r 0K (T) K (V / V (T)) ′= ⋅  represents only the dominant change and 
differs from the exact calculation! 
     As an example for the results provide by the program TEOScalc, fig. 7 show some 
selected isobars for Ar and fig. 8 illustrates the variation of the different Grüneisen 
parameters with nt pressures.  
 

 temperature at two differe

0 100 200 300
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Fig. 7: Calculated isobars v(p,T) = V(p,T)/Vr of Ar for p = 0 to 4 GPa in steps of  Dp = 0.5 GPa. Two slightly 
different rough estimates of the melting curve are included to limit the range of reasonable data.  
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Fig. 8a,b: Calculated temperature dependencies for  gq, gtb, and gth of Ar at 0 and 5 GPa, respectively. 
 
    The program TEOSfit, on the other hand, determines some of the parameters stored 
in the TPpropE by a correlated fit of thermophysical data for a given element r 

 and 

 for equal t

(o
compound).  At first the available incomplete or not yet refined data from TPpropE
the experimental data for p0C (T) , 0V (T)  and 0K (T)  are read by the program. At this 
point, one has to check whether the data files for p0C , 0V , and 0K  cover the same 
temperature ranges with the same steps in temperature. Since this is usually not the 
case, one has to fit first th a i ually ut a deeper physical meaning of 
these fits) to get "experimental" data of p0C , 0V , an 0 mperatures. This 
section is labelled "preliminary" parametric representation of 0V (T) , 0 (T)α , and 

0K (T) . These fit starts with a determination of 0

ese dat ndivid  (witho
d K e

θ  from p0C - data with the  opDE-form 
for Cv and a parametric p0 V0C C−  correction. With the best parametric fits for 0V , 0α , 

 and p0C  "experimental" values for thγ  and for the th Tα⋅ γ ⋅ − correction are 
e determ o

0K
calcu  and used for th ination of the frequency parameter f and f r the 
anharmonicity parameter A fr he fit of the p0C (T)  data. Finally, 0

lated
om t θγ  and the seco  

armoni  parameter Aγ  are determined m a correlated ata for 0V (T) , 

0 (T)α  and 0K (T) . Since, the initial fit of the C (T)  used the "experimental" values 
for thγ , a second circle (refinement) is added with the best-adjusted values for  and 
γ . The program provides finally figures for the comparison of experimental and 
calculated values for p0C (T) , 0V (T) , 0 (T)

nd
anh city  fro fit of the d

p0

0θγ

A

α , and 0K (T)  and ends with a compilation 
of th best-fitted parameters to be transferred into the data file for the elements. e 
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4.2

ommon 
NaCl, MgO, CsCl and Al2O3 [43].  Due to the modifications of 

 formulation allows for safer 
to higher pressures and temperatures. A meaningful representation of the 

onon contribution with the optimised pseudo Debye-Einstein model in 

1. Falk, G. (1990)  Physik - Zahl und Realität, Birkhäuser, Basel. 
2. Zharkov, V.N., and Kalinin, V.A. (1971)  Equations of State for Solids at High Pressure and 

s, Consultants Bureau, New York. 
., Brennan, B.J., and Irvine, R.D. (1981) Finite strain theories and comparisons with 

 

 
 

 APPLICATIONS 
 
So far we have applied the TEOSfit-program in the present and some preliminary 
version to rare gas solids [30], to data for Cu, Ag, and Au [39], and to some c
pressure calibrants like 
the program in the process of its development minor numerical changes may occur in a 
re-evaluation of these data, but we hope, that future uses of this program package will 
help to establish a reliable database for the calculation of all the thermo-physical 
properties for the elements at any pressure or temperature. 
  
5. Conclusion 
 
On the basis of a rigorous physical model the present EOS
extrapolations 
quasiharmonic ph
the frame work of the Mie-Grüneisen approximation allows for additional explicit 
anharmonic corrections, which are essential for accurate extrapolations into the high 
temperature region. Since the volume dependence of this anharmonicity A(V) given by 
the parameter A0γ  is still somewhat uncertain, a comparison with theoretical studies of 
this parameter for extended regions in pressure and temperature is very desirable. First 
attempts along this line show indeed that Molecular Dynamics [45] and modern 
Statistical Dynamics [46] calculations can help to understand the volume dependence of 
the explicit anharmonic contributions, but in any case, the semi-empirical representation 
of these anharmonic contributions in the present approach remains most useful for the 
handling of EOS data [47]. 
 
 
6. References 
 

Temperature
3. Stacey, F.D

seismological data, Geophysical Surveys 4, 189-232. 
4. Godwal, B.K., Sikka, S.K., and Chidambaram, R. (1983) Equations of state theories of condensed 

matter up to about 10 TPa, Phys. Rep. 102, 121- 197. 
5. Eliezer, S., and Ricci, R.A. (1991) High-Pressure Equations of State: Theory and Applications, 

Elsevier Science Publishers, Amsterdam. 
Anderson, O.L. (1995) Equations of State for Geop6. hysics and Ceramic Science. Oxford University 
Press, New York. 
Holzapfel, W.B. (1996) Physics of solids under strong 7. compression, Rep. Prog.  Phys. 49, 29-90. 

8. Holzapfel, W.B. (1998) Equations of state for solids under strong compression, High Press. Res. 16, 
81-126. 

9. Poirier, J.-P. (1990) Introduction to the Physics of the Earth's Interior, Cambridge University Press, 
Cambridge. 

10. Holzapfel, W.B. (2001) Equations of state for solids under strong compression, Z. Kristallogr. 216, 
473-488. 

11. Murnaghan, F.D. (1937)  Finite deformations of an elastic solid, Am. J. Math. 59, 235-260. 
12. Murnaghan, F.D. (1944) The compressibility of media under extreme pressure, Proc. Natl. Acad. Sci. 

USA  30, 244-247. 
13. Freund, J., and Ingalls, R. (1989) Inverted isothermal equations of state and determination of Bo, B'o 

and B''o,  J. Phys. Chem.  Solids  50, 263-268. 



 20

14. Baonza, V.G., Cäceres, M., and Nunez, J. (1995) Universal compressibility behaviour of dense phases, 
Phys. Rev. B 51, 28-37. 

16. .H. (1986)  A  universal equation of state for solids, J. 

17. M. (1935) The Thomas-Fermi method for metals, Phys. Rev. 47, 559-568. 
 elements based on the 

19. 67) Theoretical high-pressure equations of state including 

21. ure equations of state, Geophys. J. Int. 143, 

22. natomigen Körper, Ann d. Phys. 11, 657-697. 
 

25. .M. (1929) Diatomic molecules according to the wave mechanics. II. vibrational levels, 

ns. Matter 1, 1941-1963. 

29.  W.B. (2002) Equations of state for regular solids, High Press. Res. 22, 209-216. 

f state 

36.  spezifischen Wärme, Ann. d. Phys. 39, 789-839. 

s with application to simple substances and framework silicates, Rev. 

emperature Raman 

39.  Sievers, W. (2001) Equations of state for Cu, Ag, and Au for wide 

40. 
 

42. 

ys. Earth Planet. Inter. 39, 167-177. 
be presented) at the AIRAPT conference, Bordeaux. 

ice 

s of 

47. OSdata.de is presently in preparation to provide these codes and any question 
concerning their application should be directed to holzapfel@physik.upb.de

15. Birch F. (1947) Finite elastic strain of cubic crystals, Phys. Rev. 71, 809-824. 
Vinet, P., Ferrante, J., Smith, J.R., and Rose, J
Phys. Condens. Matter 19, L467-L473. 
Slater, J.C., and Krutter, H.

18. Feynman, R.P., Metropolis, N., and Teller, E. (1949) Equation of state of
generalized Fermi-Thomas Theory, Phys. Rev. 75, 1561. 
Salpeter, E.E, and Zapolsky, H.S. (19
correlation energy, Phys. Rev. 158, 876-886. 

20. Landau, L.D., and Lifshitz, E.M. (1980) Statistical Physics. Part 1-3rd ed., Pergamon Press, Oxford. 
Stacey, F.D. (2000) The J-primed approach to high-press
621-628. 
Mie, G. (1903) Zur kinetischen Theorie der ei

23. Jones, J.E. (1924) On the determination of molecular fields, Proc. Roy. Soc. (London) A106, 441-462.
24. Born, M., and Mayer, J. (1932) Zur Gittertheorie der Ionenkristalle, Z. Physik 75, 1-18. 

Morse, Ph
Phys. Rev. 34, 57-64. 

26. Rydberg, R. (1932) Graphische Darstellung einiger bandenspektroskopischer Ergebnisse, Z. Physik 73, 
376-385. 

27. Vinet, P., Rose, J.H., Ferrante, J., and Smith, J.R. (1989) Universal features of the equation of state of 
solids,  J. Phys. Conde

28. Holzapfel, W.B. (1991) Equations of state for strong compression, High Press. Res. 7, 290-293. 
Holzapfel,

30. Holzapfel, W.B., Hartwig, M., and Reiss, G. (2001) Equations of state for rare gas solids under strong 
compression, J. Low Temp. Phys. 122, 401-412. 

31. Holzapfel, W.B. (2003) Comment on „Energy  and pressure versus volume: Equation o
motivated by the stabilized jellium model”, Phys. Rev. B67, 026102/1-3. 

32. Köhler, U., Johannsen, P.G., and Holzapfel, W.B. (1997) Equation of state data for CsCl-type alkali 
halides, J. Phys.: Condens. Matter 9, 5581-5592. 

33. Holzapfel, W.B. (1994) Approximate equations of state for solids from limited data sets,  J. Phys. 
Chem.  Solids  55, 711-719. 

34. Einstein, A. (1907) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, 
Ann d. Phys. 22, 180-194. 

35. Grüneisen, E. (1912) Theorie des festen Zustandes einatomiger Elemente, Ann. d. Phys. IV,  257-306. 
Debye, P. (1912) Zur Theorie der

37. Kieffer, S.W. (1979) Thermodynamics and lattice vibrations of minerals. 3. Lattice dynamics and an 
approximation for mineral
Geophys. Space Phys. 17, 35-59. 

38. Gillet, Ph., Guyot, F.,  and Malezieux, J-M. (1998) High-pressure, high-t
spectroscopy of Ca2GeO4 (olivine form): some insight on anharmonicity, Phys. Earth Planet. Inter.  
58, 141-154. 
Holzapfel, W.B., Hartwig, M., and
ranges in temperature and pressure up to 500 GPa and Above, J. Phys. Chem. Ref. Data 30, 515-529. 
Holzapfel, W.B. (2002) Anharmonicity in the EOS of Cu, Ag, and Au, J. Phys.: Condens. Matter 14, 
10525-10531.

41. Table 5.1 and discussion on p. 140 in ref. 2. 
Segeletes, S.B. (1998) Army Research Laboratory, Aberdeen, USA, report number: ARL-TR-1758. 

43. Barton, M.A., and Stacey, F.D. (1985) The Grüneisen parameter at high pressure: A molecular 
dynamic study, Ph

44. Ponkratz, U., and Holzapfel, W.B. (2003) (to 
45. Oganov, A.R., Brodholt, J.P., and Price, G.D. (2000) Comparative study of quasiharmonic latt

dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite,  Phys. Earth Planet. 
Inter. 122, 277-288. 

46. Karasevskyy, A.I., and Holzapfel, W.B. (2003) Equations of states and thermodynamic propertie
rare gas solids under pressure calculated with a self-consistent statistical method, Phys. Rev. B. (to be 
published). 
The webpage www.E

 .  


	WILFRIED B. HOLZAPFEL
	Physics Department
	University Paderborn
	33095 Paderborn / Germany

