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We report the experimental point-by-point sampling of the Wigner function for nonclassical states
created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-
multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche
photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light
states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode
states without any phase reference.
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Modern quantum technologies hinge on the capability to
generate, manipulate, and measure quantum states. A suc-
cessful experimental procedure requires verification of each
of these steps: this is the scope of quantum tomography [1].
Light is of particular significance in most of those

developments because it is unique as an information carrier.
In quantum optics, the continuous-variable community is
mostly concerned with the wave aspects of light, looking
chiefly at quantities such as quantum noise, squeezing, and
entanglement. Homodyne detection is then the technique of
choice since it allows for a direct reconstruction of the
Wigner function in terms of the field quadratures [2].
Interestingly enough, the Wigner function can also be

determined at a single point in phase space bymeasuring the
parity [3]. The complete function can then be sampled if this
measurement is performed at a sufficient number of points.
This direct probing was first demonstrated with motional
states of a trapped ion [4] and applied with great success to
Fock states in cavity quantum electrodynamics [5].
In optics, this method can be implemented with a highly

asymmetric beam splitter, which superimposes the quantum
signal of interest with a coherent reference field (which
occasionally can be as weak as the signal [6,7]), followed by
photon counting [8,9]. Despite its simplicity, the approach
places stringent demands on detector performance and
requires a full photon-number resolving (PNR) capability
[10–14], which, in fact, limits its practical applicability. The
same complication arises in other alternative methods [15].
A promising PNR detection strategy has recently been

demonstrated [16–18]. It is based on time-multiplexed
detection (TMD) with avalanche photodiodes (APDs)
and works even with pulses [19]. For visible light, this
has been used to implement a first direct probing for
heralded single photons [20]. However, at the telecom
wavelengths employed in our experiment, the established
technology is based on InGaAs APDs, which are plagued

by high dark-count rates and long dead times, thereby
making gating essential.
The effective implementation of these advanced schemes

thus demands an accurate knowledge of the detector [21–27].
Toaddress this issue,we adopt here the so-called fittingof data
patterns, an approach proposed in Refs. [28,29] and exper-
imentally realized in several groups [30–32]. This technique
enables calibration of detectors with a sizable number of
outcomes and their subsequent use in state estimation. It does
not extract the complete set of operators that describe the
detector, but rather uses the raw measurement outcome
distributions for known input states as the detector calibration.
Besides, there is no need for any numerical postprocessing. In
thisLetterweuse the pattern tomography as an efficient tool to
probe point by point the Wigner function of pulsed single
photons and two-mode squeezed states at telecom wave-
lengths. Thereby, we achieve the inference of mode-selective,
genuine two-mode squeezing without phase reference.
For a single-mode field, represented by the density

operator ρ̂, the direct probing is based on the observation
that the Wigner function at the point α of the phase space
can be expressed as the average value of the parity operator
on the probed quantum state ρ̂ displaced by −α [8,9]: viz.,

WðαÞ ¼ 2

π
Tr½D̂†ðαÞρ̂ D̂ðαÞΠ̂� ¼ 2

π

X

n

ð−1Þnρnnð−αÞ: ð1Þ

Here, Π̂¼expðiπâ†âÞ is the parity, whose eigenstates are the
Fock states jni, with eigenvalues ð−1Þn, â and â† are photon
annihilation and creation operators, ρ̂ð−αÞ¼D̂†ðαÞρ̂D̂ðαÞ,
and D̂ðαÞ¼expðαâ†−α�âÞ is the displacement.
There are significant differences between this direct

probing and homodyne tomography. The latter is a
Gaussian measurement that projects the state along a field
quadrature. A PNR detector, on the other hand, projects onto
the photon-number basis,which is a non-Gaussian operation.
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Another important distinction is the fact that homodyne
detection involves an intrinsic filtering: only the part of the
signal that overlapswith the local oscillator can be seen by the
detector. Losses andmodemismatchyield the same signature.
Conversely, direct probing detects all the modes, which

results in a more complete characterization with an intrinsic
quantification of the mode overlap. For a nonunity overlap
M with the reference beam, the measured Wigner function
is the product of the state and vacuum Wigner functions:
WðαÞ ¼ Wstateð

ffiffiffiffiffiffi
M

p
αÞWvacð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M

p
αÞ. This behavior is

fundamentally different from losses and is crucial to
estimating both the losses and the overlap with the local
oscillator.
To sum up, homodyne detection is mode selective and

insensitive to detrimental effects from other modes and
backgrounds. Direct probing is sensitive to all modes and to
the spatial-spectral single-mode characteristics of the states.
To demonstrate the capabilities of the direct probing, we

choose a pulsed single-photon state with a single-mode
spectral structure, i.e., with a diagonal density matrix. This
simplifies the detection scheme, preventing the need for
phase sensitivity. Consequently, we use parametric down-
conversion (PDC), a nonlinear process in which one pump
photon decays into two twin photons, called the signal and
the idler. Ideally, the output of a PDC source is the two-
mode squeezed vacuum

jΨi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p X

n

λnjn; ni; ð2Þ

where n is the photon number in each mode, λ ¼ tanhðrÞ,
and r is the squeezing parameter, which scales linearly with
the pump field amplitude, the nonlinear coefficient χð2Þ of
the medium, and the interaction length inside the crystal.
In the absence of losses, the perfect photon-number

correlations of this state allow for heralding Fock states in
one mode by conditioning on certain photon numbers in the
other. With losses, the heralded states can still look pretty
much like Fock states and can show nonclassical statistics.
These correlations can be clearly appreciated using the

Wigner function of the PDC state (2), which is

Wðα; βÞ ¼ 4

π2
exp ð−e2rjαþ β�e−iϕj2 − e−2rjα − β�e−iϕj2Þ;

ð3Þ
where α and β are the complex quadratures of the modes
and ϕ comes from the phase of the pump. For infinite
squeezing r → ∞, we have jαþ β�e−iϕj ¼ 0; i.e., the
positions (real parts αr and βr) and the momenta (imaginary
parts αi and βi) are perfectly correlated or anticorrelated, as
indicated by the arrows in Fig. 1(a). For a finite r, the
variance of the correlations is Varðjαþ β�e−iϕjÞ ¼ e−2r,
which is below the Heisenberg limit of coherent states by a
factor of e−2r, a signature of entanglement between the two
modes. Such correlations could be measured in a balanced
homodyne setup, but it is experimentally challenging, as
pump and local oscillator phases have to be locked.

Since we cannot access this phase, this is tantamount to
averaging over it, which yields the state

Wavgðα; βÞ ¼
4

π2
exp½−2 coshð2rÞðjαj2 þ jβj2Þ�

× I0( − 4 sinhð2rÞjα∥βj); ð4Þ
where I0ðxÞ is the modified Bessel function. This Wavg
depends only on the amplitudes jαj and jβj. Correspondingly,
onecanonlymeasure photonnumbers andobtain information
about the diagonal elements of the density matrix. The off-
diagonal elements remain hidden and entanglement is lost.
Nonetheless, the correlations are still present around

the origin, as sketched in Fig. 1(b): if we set β ¼ 0, the
distribution of jαj is narrower by a factor of coshð2rÞ than
the corresponding one for the vacuum, which can be
verified with direct probing.
Our experimental setup is schematized in Fig. 2. We use

PDC in an 8 mm long periodically poled potassium titanyl
phosphate waveguide. The process is pumped with 0.5 ps
pulses at a wavelength of 768 nm, producing orthogonally
polarized signal and idler beams at 1536 nm. The signal
and idler modes are decorrelated in frequency, enabling the
heralding of nearly pure states [33].
We overlap the signal with a coherent reference beam in

an asymmetric beam splitter with a 90∶10 splitting ratio,
consisting of a half-wave plate and a polarizing beam
splitter. In the limit of unity transmission and perfect mode
overlap, this corresponds to the displacement operator
D̂ðαÞ [8]. To maximize the mode overlap, the reference
beam has to match the signal mode, both spectrally and
temporally. Therefore, we perform spectral shaping with a
4f spectrometer made of two gratings and two lenses, all
separated by the focal length of the lenses. In the Fourier
plane of this spectrometer, we use a variable slit which can
be rotated around the propagation axis; this allows us to
shape the reference spectrum to a Gaussian form matching
the spectrum of the PDC mode. The temporal overlap is
achieved with a translation stage in the reference beam.
From Hong-Ou-Mandel dips between the reference and the
signal, we estimate the overlap M to be around 0.7.

(a) (b)

FIG. 1. Phase-space correlations in PDC. (a) Direct probing
scheme with two displacement beams, α and β, and PNR
measurements. The marginal distributions of signal or idler are
indicated by the larger circles, while correlations are indicated by
the darker circles. (b) Phase-averaged state, where only the
amplitudes remain correlated. Specifically, the distribution for
β ¼ 0 shows correlations below the corresponding ones for the
vacuum, from which the initial squeezing can be inferred.
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Both output ports are measured with a TMD. One mode
is delayed at the input of the TMD and then each mode is
split into four temporal bins and two spacial bins at 50∶50
beam splitters. In total, this amounts to 16 bins such that up
to eight photons per mode can be measured. Each pulse
impinges onto one of two InGaAs APDs with detection
efficiencies around 20%. InGaAs APDs have the detri-
mental effect of afterpulsing, which means that after a
detection there is a finite probability (∼7%) of a subsequent
detection without a photon being present. This makes the
analysis of TMD data extremely difficult, as afterpulses
modify the photon-number distribution in a nontrivial way.
Some detector tomography is therefore necessary to reliably

extract the photon statistics of the incoming modes. Fitting of
data patterns is ideally suited for this task (see theSupplemental
Material for details [34]). It requires knowledge of the detector
outputs for certified input probes. We use coherent states
already present as the reference beam and couple them into
both inputs of the TMDwith different power settings adjusted
by motorized half-wave plates and polarizing beam splitters.
Powers are calibrated with respect to the power at the

input fiber of the TMD. Hence, losses inside the TMD and
quantum efficiency of the APDs are accounted for by the
tomography. Losses inside the waveguide, subsequent
optical elements, and the fiber incoupling must be included
in the reconstructed state. This is the most meaningful
separation between the generation and the detection parts,
as it is the point at which the source would be combined
with other sources or integrated into a larger network.
The displaced PDC states are measured with the

TMD. The joint photon-number distribution Pmn of

each displaced state is estimated using pattern
tomography and the corresponding parity SðjαjÞ ¼P

mnð−1ÞmþnPmnðjαjÞ calculated, where PmnðjαjÞ is the
reconstructed two-mode photon-number distribution with
signal mode displaced by jαj. The measured parity values
can be immediately converted to a Wigner function:
WðjαjÞ ¼ 4SðjαjÞ=π2.
Pattern tomography makes use of a set of 639 two-mode

coherent probes with known signal or idler amplitudes in the
range0< jαðξÞj<3.5. Theprobesaremeasuredwith theTMD
and the corresponding patterns are recorded. A sample of 100
patterns is used for any single reconstruction, as this matches
well a typical number of linearly independent TMDoutcomes
for moderately intense signals. The reconstruction is repeated
with different randomly chosen samples of pattern subsets.
This makes it possible to estimate the errors and calculate the
final reconstruction averaging over pattern sampling.
To compare the experimentally obtained parities with the

theoretical predictions, one has to know the reference
displacements, as well as the squeezing r and the coupling
efficiency η. Displacements are determined bymeasuring the
reference beam alone and comparing the probabilities of zero
detection with those of the coherent probes. A least-squares
fit is sufficient for this purpose. Additionally, the original
undisplaced PDC state is measured to estimate the squeezing
parameter r ≈ 0.6 and coupling efficiency η ≈ 0.75: these are
the values for which the theory provides the best fit.
Figure 3 shows the parity of the displaced PDC state, as

estimated from the TMD data, for various displacements.
For a moderate jαj, the measured parity is below the
corresponding one for the vacuum and the Wigner function
becomes slightly narrower, witnessing the presence of the
quadrature squeezing. This effect is small, given the limited
amount of squeezing available, but statistically significant
and also happens with no mode overlap.We emphasize that,
although this narrowing has been discussed already for pure
states, as in Eq. (2), it also reveals squeezing formixed states.

FIG. 2. Experimental setup. Pulsed light from an optical para-
metric oscillator (OPO) is frequency doubled by second harmonic
generation (SHG) and spectrally shaped in a 4f line. After the PDC,
the pump is filteredwith a long pass filter (LP) and the sinc sidelobes
of the PDCspectrumandunwantedbackgroundare suppressedwith
a bandpass filter (BF). Signal and idler are split at a polarizing beam
splitter (PBS). The reference beam, monitored with a power meter
(PM), is filtered to the single-photon level using neutral density
filters (NDs) and overlapped with the idler at a 90∶10 coupler
consisting of a half-wave plate (HWP) and a PBS. This realizes the
displacement operation D̂ðαÞ. Both states are coupled into single-
mode fibers and measured with an eight-bin, two-mode TMD.

FIG. 3. Experimentally determined parities of a two-mode
displaced PDC state with r ≈ 0.6 as obtained with high overlap
(M ¼ 0.7, red symbols) and no overlap (M ¼ 0, blue symbols)
between the reference and signal modes. Theoretical predictions
are also shown (the solid lines).
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Next, we focus on heralding single-mode states by a
single idler click. Ideally, such a heralding generates a
single photon in the signal mode, a state characterized by a
strongly negative Wigner function at the origin.
Heralding at telecomwavelengths is highly nontrivial due

to the afterpulses in the idler counts. This effect can be
ignored for weak undisplaced PDC states [31], but, for large
displacements, afterpulses make up a significant fraction of
the small number of genuine idler detections (more than
10% in our case). This is illustrated in Fig. 4, where the idler
single-click detection rate is plotted as a function of the
reference beam intensity jαj2. Without afterpulsing, the idler
rates should stay constant, whilewe observe a linear increase
of the idler detection rate with jαj2.
After a single idler detection, the postmeasurement state

of the signal mode is Ps ¼ TriðÊ P̂ Ê†Þ=Trs;iðÊ P̂ Ê†Þ,
where Ê†Ê ¼ Π̂1s is the operator describing the idler
detection, and Trs;i indicates tracing over both the
signal and idler modes. To deal with afterpulses, we
construct the measurement operator as an incoherent
superposition of signal and idler single detections, Ê†Ê ¼
½1 − xðαÞ�Π̂1i þ xðαÞΠ̂1s. The contribution of afterpulses
for a given displacement is estimated from Fig. 4.
Afterpulses introduce a systematic negative bias into the

reconstructed values of the signal parity. This is because
heralding by an afterpulse increases the single-photon
component of the signal state.
Experimental characterization of displaced heralded

states measured with and without overlap between the
signal and reference modes is summarized in Fig. 5. For
high overlap, we expect the parity to trace the Wigner
function of the heralded signal state, which can be
approximated by a single-photon state. The negativity
around the origin is apparent in the red curves (corrected
for afterpulses). For no overlap, the measured parities
remain negative for all displacements. The two cases can
be discriminated, showing that the heralded states are very
sensitive to previous interactions in the signal beam.
In Fig. 6 we show the reconstructed signal photon-

number distributions Pn for three different displacements

and r ≈ 0.6. As the reference amplitude is increased, the
vacuum components of the signal states are strongly
suppressed. This could be expected. The heralded signal
is approximately a single-photon state, Ps

n ≈ δ1;n. With
mode overlap switched on, this state is displaced by jαj;
with mode overlap switched off, the resulting photon-
number distribution is simply a discrete convolution of the
reference Poissonian distribution Pr

n ¼ jαj2n expð−jαj2Þ=n!
and the signal single-photon distribution Ps

n. Obviously, the

FIG. 4. Observed idler singles rate (the dots) for different signal
displacements of a PDC state with r ≈ 0.6. Best linear fit is also
shown (the line).

FIG. 5. Parities of heralded signal states measured with high
overlap (the red symbols) and no overlap (the blue symbols) and
r ≈ 0.6. Solid (broken) lines show theory with afterpulses
included (ignored). Notice that the afterpulses tend to decrease
the measured parity of the displaced signal mode.

FIG. 6. Reconstructed signal photon-number distributions of
heralded and displaced PDC states (the dots); r ≈ 0.6. Theoretical
models are also shown (the bars). Displacement increases from
top to bottom. Left (right) panels correspond to strong (no)
overlap between the reference and signal modes.
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appearance of a Kronecker delta in such a convolution
makes the reference Poissonian distribution displaced by
one towards higher photon numbers, Pn ≈ Pr

n−1 effectively
erasing the vacuum component P0 ≈ 0.
It happens often that the full distribution Pmn is not

required for a specific purpose. For example, only a few
elements of Pmn or a linear function of Pmn, such as parity,
might be enough. This is called partial tomography and
finds applications in experiments with complex, highly
dimensional systems, where a full tomography is imprac-
tical or even impossible. A nice feature of the pattern
approach is that both full and partial tomography are done
in much the same way. A demonstration of the technique is
presented in the Supplemental Material [34].
In summary, we have directly probed theWigner function

of a nonclassical single-photonwave packet in a robust, loss-
tolerant manner. Our TMD detector, with the tool of data
pattern, can verify the nonclassicality and highlight the role
ofmodeproperties in the detection. This leads us to recognize
the typesof experimental imperfections andgives us valuable
information about the degradation caused by each one.
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