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Abstract

We study topological phenomena of quantum walks by implementing a novel protocol that extends
the range of accessible properties to the eigenvalues of the walk operator. To this end, we
experimentally realise for the first time a split-step quantum walk with decoupling, which allows for
investigating the effect of a bulk-boundary while realising only a single bulk configuration. The
experimental platform is implemented with the well-established time-multiplexing architecture based
on fibre-loops and coherent input states. The symmetry protected edge states are approximated with
high similarities and we read-out the phase relative to a reference for all modes. In this way we observe
eigenvalues which are distinguished by the presence or absence of sign flips between steps.
Furthermore, the results show that investigating a bulk-boundary with a single bulk is experimentally
feasible when decoupling the walk beforehand.

1. Introduction

Phenomena such as the quantum Hall effect [ 1] and topological insulators [2, 3] aroused vivid interest in the
study of the topological properties of physical systems. While these effects have been originally observed in
semiconductor systems, experimental studies have been conducted on systems such as ultra cold atoms [4-7],
photonic model systems [8—12], solid-state systems [13, 14], superconducting circuits [15], mechanical
oscillators [16] and microwave networks [17—19]. In photonic systems, topological phenomena can be accessed
by implementing a split-step quantum walk on a 1D optical lattice [20-22].

The concept of quantum random walks extends the model of classical random walks by taking the effects of
interference into consideration. It has been established for two different scenarios, namely the continuous-time
and the discrete-time version. The continuous-time quantum walk is defined by a Hamiltonian including
nearest neighbour hopping, while discrete-time quantum walks (DTQW) describe the discrete time evolution of
awalker with an internal degree of freedom on a lattice. An extensive account on the relation of discrete- and
continuous-time quantum walks from view-point of mathematical physics can be found in [23, 24]. The
interference effects allow quantum walks to spread quadratically faster than their classical counterparts, which
recently raised much interest in quantum walks as a computational resource [25-27]. Moreover, quantum walks
exhibit a rich variety of single-particle quantum effects such as Landau—Zener tunnelling [28], the Klein paradox
[29] or the formation of molecules [30]. Recently, a uniform framework for coupling external gauge fields to
quantum walks has been established [31] which contains the one-dimensional electric walks studied in [32] as a
special case. Possible experimental implementations include nuclear magnetic resonance [33, 34], trapped ions
[35,36] and atoms [37, 38]. Considering photonic systems, translating the walker in the spatial degree of
freedom might seem most straight-forward [39—46], however, implementations utilising time as the external
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degree of freedom outperform spatiallly multiplexed systems in terms of resource efficiency and stability
[47-53]. Other possible degrees of freedom include spectral distributions or orbital angular momentum [54, 55].

So far, the experimental investigation of topological phenomena has been focused on the demonstration of
edge states, i.e. eigenstates of the systems, while eigenvalues of the walk operator have not been measured.
Employing a phase-reference method, in which we selectively interfere components of walker’s wavefunction
assigned to a certain step, position and polarisation with a reference of well-controlled phase, we are for the first
time able to measure not only the intensities related to the eigenfunctions, but also the signs related to the
eigenvalues of the walk operator. This work also constitutes the first experimental implementation of a split-step
quantum walk with decoupling as proposed in [56, 57], which allows for investigating the effect of a bulk-
boundary while realising only a single bulk configuration. Such a scheme thus not only requires a smaller set of
different coin angles that have to be implemented, but also reduces the size of the space occupied by the walk,
freeing positions which can now be used for routing of the phase-reference. We implement this split-step
quantum walk system exhibiting a bulk-boundary with decoupling by making use of a photonic platform [47]
that allows for the read-out of the spatial and the coin degree of freedom as well as for dynamic coin
operations [58].

In our work, we build on the comprehensive topological classification framework for infinite 1D lattices laid
outin [57]. It predicts the emergence of symmetry protected edge states at the boundary of bulks with different
symmetry indices. These symmetry protected eigenfunctions of the walks operator belong to the eigenvalues +1,
which lie in the band gap of the system. Whereas the minimal number of these edge states is an invariant
quantity, their associated eigenvalue (41 or —1) may change under local perturbations and hence the
eigenvalues of edge states for half-chain quantum walks are not robust against local perturbation. We will
investigate this behaviour for an experimental realisation of the split-step quantum walk.

The article is structured as follows: we start with the definition of a (DTQW) in section 2, followed by an
introduction to the topological classification of 1D quantum walks in section 2.1, then present split-step
quantum walks in section 2.3, the relation between chiral symmetry and topological phases in section 2.4, the
concept of decoupling in section 2.5, the concrete settings in section 2.6 as well as the expected eigenfunctions
and eigenvalues in section 2.7. We then turn to the experimental concepts, namely the physical implementation
in section 3.1, the eigenstate distillation in section 3.2 and the phase-reference method in section 3.3. The results
concerning the evolution of the wavefunction and the validation of the eigenvalues are presented in sections 4.1
resp. 4.2. Finally, the conclusion is drawn in section 5.

2. Theoretical background

Discrete time quantum walks describe the discrete time evolution of a walker with an internal degree of freedom
on the lattice. We here focus on the spatially one-dimensional case where at each site of the lattice the internal
degree of freedom is described by the finite-dimensional coin space C?. Consequently, the overall Hilbert space is
H = £%(2) ® C% A quantum walk W is a unitary operator on H which obeys a locality condition and
determines the discrete time evolution of a state |1 (¢)) € H by

[t + 1)) = W (). (1)

The locality of W means that in a single time step an initially localised state can jump only by a finite number of
lattice sites. We remark that the classification in [57] allows for more general notions of locality, but bounding
the jump length is sufficient for this paper.

A constructive way to define quantum walks, which is handy for experimental realisations and automatically
fulfils the locality condition, is the concept of coined quantum walks. For these the walk operator Wis build from
afinite sequence of conditional shifts and coin operations: Denotingby |x) € #*(Z)and i) € C?basis vectors of
the position and coin space, respectively, conditional shifts and coin operations act on basis vectors of H by

Clx, i) =Y Ci®)|x, j) and  Sjlx, i) = |x + &, i). 2
j

The coin operation Cacts locally in each cell, whereas the conditional shift S; (S ]-T) shifts the j-component of the
coin space to the right (left) while leaving the other internal degrees of freedom unchanged. Both operators are
unitaries, such that Wis also guaranteed to be unitary. In this definition, the maximal jump-length of the walk is
bounded from above, by the number of shift operations in the sequence constituting W.

In our experimental realisation the coin-space is two-dimensional and the basis vectors are implemented by
horizontal and vertical polarisation, which we denote by |H) and | V'), respectively. The quantum walks which
are modelled in the experiment are of the form
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W = S8y GSuSy Cay 3)

with possibly different coins C; and C,, which will be specified later in sections 2.3 and 2.6.

Note, that in general one might define a one-dimensional quantum walk abstractly as a unitary on a doubly
infinite direct sum of possibly different finite dimensional Hilbert spaces H, : H = @ czHs. Thelocality
condition is then stated as

(YelWipy) = 0 for all ¢ € Hy, ¥, € H, with |x — y|>L, (4)

for some L < oo. The general theory for the topological classification of symmetric quantum walks, which will
be sketched in the next section, demands an even less strict definition of locality. There the matrix elements
(1| Wa),) are only assumed to decay sufficiently fast with [x — y|.

2.1. Topological classification of one-dimensional quantum walks

With this setting in mind, let us sketch the topological classification of symmetric quantum walks given in [57].
Below we apply the results provided here to discuss the topological classification of the experimentally
implemented model.

A crucial assumption in [57] is that the quantum walks under consideration are ‘symmetric’, i.e. thereis a
group of discrete, involutive symmetries which either commute or commute up to taking the adjoint with the
walks.

Concretely, we distinguish the following unitary and anti-unitary symmetries:

chiral symmetry:yW~" = W, with v unitary,
particle=hole symmetry: nWrj' = W, with ) anti-unitary,

time-reversal symmetry: TWr' = W, with 7 anti-unitary.

The groups generated by these symmetries either contain only one or all three, since any two of them
multiply to the third, and they constitute the symmetry types of the tenfold way [57, 59, 60]. By the above
relations, the +1-eigenspaces of symmetric quantum walks are invariant under these symmetries.
Consequently, we assume the bulk systems under consideration to be gapped at these symmetry-invariant
points, similar to the Hamiltonian setting4.

The topological classification of symmetric quantum walks is concerned with two questions: (1) which
symmetric quantum walks may be continuously connected without breaking either the symmetries, the gap
condition or locality, and (2) which walks may be transformed into each other by perturbing one of them locally.
In contrast to the continuous time setting, these questions are fundamentally different: In the unitary discrete-
time setting there are local perturbations that cannot be contracted, which is due to the extra symmetry invariant
point in the spectrum at —1 [57]. The classification in [57] answers these questions by assigning the three
symmetry indices si_, si, and st toeach symmetric quantum walk. Here, si.. characterise the +1-eigenspaces
and their values cannot be changed by continuous symmetric deformations. On the other hand, the right
symmetry index st isabulk invariant that characterises the evolution asymptotically far on the right half-chain. It
is also invariant under continuous deformations, but in contrast to siy also cannot be changed by locally
perturbing the system.

2.2.Emergence of symmetry protected edge states
An important physical consequence of this topological classification of symmetric quantum walks is the bulk-
boundary correspondence: whenever two bulks are joined spatially, the absolute value of the difference of their
right symmetry indices st is alower bound for the number of symmetry protected edge states which appear near
the interface region. These edge states have eigenvalues 1 and are therefore stable against continuous
deformations that respect the symmetries. Since these symmetry protected edge states are the only
eigenfunctions observed in the concrete examples below, we occasionally refer to them simply as eigenfunctions.
In order to provide experimental evidence for the emergence of symmetry protected edge states one typically
measures the position distribution of a time evolved initial state. This is, however, not sufficient to reveal their
topological nature since the emergence of localised states near alocal perturbation is a typical phenomenon
[30, 62]. Instead, in this publication we demonstrate a direct eigenvalue measurement to give evidence that the
observed edge states are indeed symmetry protected.

*Inthe general theory of [56, 57, 61] quantum walks satisfy the relations of a symmetry type and are gapped at the symmetry-invariant points
are called admissible.
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Figure 1. Left: parameter plane for the split-step walk (5) with regions of constant index. The values are determined by the winding
number of (9). The crosses mark the parameters for our two settings (A /B). Right: Intensity distribution |1 (x)|* of the corresponding
eigenfunctions (21), restricted to the even sublattice. The distribution is the same for both settings.

The appearance of symmetry protected edge states does not depend on how the crossover between two
symmetric systems is designed. A particularly simple scenario in which such edge states emerge is given by
decoupling a walk operator Wlocally to awalk W/ = W, @& W; which has zero transition amplitudes between
the right and left half chain of the cut. Such decouplings exist for every walk and every symmetry type and can
even be chosen to be a continuous perturbation [57]. Depending only on the right half-chain, the right symmetry
index 5( W) = si(Wg) of Wmay then be calculated as the combined symmetry indices si_ and si, of the right
half-chain walk, i.e. si(W) = siy(WR) + si_(Wg).

However, whether the symmetry protected edge states correspond tot the eigenvalue +1 or —1 depends on
the choice of crossover, since in contrast to their sum 31(W), the indices 31i( W) = sii(WgR) themselves are not
stable under local perturbations. Exactly this dependence of 51i(W) on the crossover will be analysed and
experimentally validated in the present publication by choosing different decouplings.

2.3. Split-step quantum walks
Emblematic for coined quantum walks is the so-called split-step quantum walk [20]. It is defined on
H = 4(2) ® C?asthe coined quantum walk

W (0, 0,) = 5 C(61)S1C(62), (5)
where §; = Syand § = Sy (compare (2)) shift the internal basis state |H ) € C*totherightand |V') to the left,
respectively. The coin operation

(6)

C(0) = e it = ( cos(0) —isin(o))

—isin(f) cos(0)

rotates the internal degree of freedom by an angle § around the o,-axis. Note that the split-step walk is typically
defined with rotations around the o,-axis. Since these two implementations are unitarily equivalent and in the
experiment described below we implement the o,-rotation, we take (5) with coin (6) as the definition of the split-
step walk. The walk (5) is of symmetry type BDI, i.e. it is chiral, time-reversal and particle-hole symmetric with
each symmetry squaring to the identity. Moreover, it exhibits a rich structure of topological phases, and
therefore has become the working example in many publications concerning topological effects in quantum
walks [9, 20,21, 61, 63]. Figure 1 shows the different topological phases of the split-step quantum walk. The
interactive web tool in [64] allows the user to explore how the eigenfunctions and the symmetry indices of the
split-step walk change with modifications of the parameters ¢, and 6, as well as for different decouplings.

The quantum walk we implement in the experiment described below is a model related to the split-step walk.
Itis defined by

W = SC(6,)SC(0y), (7)

where S = $; S\ denotes the bidirectional conditional shift. Since this walk protocol contains two such shift
operations, a walker which is initially localised on even (odd) positions, never leaves the even (odd) sub-lattice.
Thus, on each of these sublattices the walk (7) implements effectively a split-step walk with doubled jump length.
Since our initial states will always be localised at x = 0, we restrict considerations to the even sub-lattice from
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Figure 2. Schematic picture of the coin angle set-up for the walk (7) in our two settings. The coin angles atx = —1 decouple the walk
betweenx = —landx = 0. A denotes the eigenvalue,  the chirality and y the decay coefficient of the edge state, respectively.

now on. Rescaling this even sub-lattice by x — x/2 the effective walk we implement in the experiment is the
split-step walk defined in (5).

2.4. Chiral symmetry and topological phases
Being of symmetry type BDI the effective split-step walk has chiral symmetry, i.e. there exists a unitary - with
v? = 41 such that yW~" = WT. This symmetry operator is given by

—sin(6,) icos(@z))

icos(6,)  sin(6,) ®)

v=E@% with y= (
XEZL

where the 6,-dependence of  is due to the choice of the local bases: conjugating with C(6,/2)

gives C(0,/2)7,C(—0,/2) = o,.

For translation invariant chiral symmetric walks with 42 = +1, the symmetry index stis given by the
winding number of a certain matrix block of the walk operator in momentum space. Since the derivation of the
formula would exceed the discussion here, we only sketch the relevant relations. The complete derivation can be
foundin [61, proposition 3.9]. Being translation invariant, the split-step quantum walk gets mapped to a
continuous matrix valued function W (k) of the quasi momentum k by the discrete Fourier transformation
F: H(2) @ C* — L3 ([—m, 7)) @ C2 If we now switch to a chiral eigenbasis (e.g. by conjugating with
U = C(6,/2 + m/4)), the symmetry index is given by the winding of the upper right matrix element

(UW (k) U "), = —i(sin(6y)cos(6,) + cos(6y)sin(8,)cos(k) — icos(6y)sin(k)), )

asa complex valued function of k € [ — 7, 7). The corresponding values of the index are shown in the
parameter plane in figure 1. Compare also [64] for a visualisation of the winding function (9). Note, that there
the order of ), and 0, is interchanged and the coin rotations are defined as R(f) = exp(iflo, ), resultingina
clockwise 7/2 rotation of the parameter plane in figure 1.

2.5.Decoupling

To construct a decoupling for the split-step walk we make use of its special form. Replacing in (5) the local coin
C(6,) atx = 0byareflective coin, i.e. a coin whose diagonal elements are zero, decouples the resulting walk
betweenx = 0andx = —1. To reproduce this decoupled split-step setting as an effective sublattice walk of the
experimentally accessible walk, we need to replace the coin C(f;) atx = —1in (7).

The decoupling coins within the parameter regions are the rotations by angles = + 7/2, for which (6)
indeed has only zeros on the diagonal. Whenever a walk in a non-trivial phase, i.e. with non-vanishing stis
decoupled, exponentially localised eigenstates are predicted at the interface by bulk-boundary correspondence.
As remarked above, however, it depends on the specific decoupling whether these eigenfunctions correspond to
the eigenvalue +1 or —1. These two possibilities can be distinguished by an additional (walk specific) invariant,
namely 5,(W) = si_(Wg) of the decoupled walk W/ = W, ® Wi.

2.6. Settings for the experimental implementation
We consider two settings with different values for the coin. In both settings the effective walks have non-trivial

symmetry index and are decoupled between x = —1 and x = 0. The aim is to determine the eigenvalues of the
eigenfunctions emerging to the right at the boundary, i.e. on Hz = @,>0H..- The two settings for (7) are the
following (see figure 2):
Setting A:
0,=n/4 and  O,(x) = {”/2 x=-1 (10)
0 else
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Setting B:

—7r/2 x=-1

0, =3n/4 and 0i(x) = {0 (11)

else

In both cases 6 is chosen to decouple the walk on the even sub-lattice. We do not need to specify the left half
chain here, since we are only interested in edge states of the decoupled walk located to the right. Hence, only the
coin configuration for x > 0 determines the phase of the effective walk, and we infer from the phase diagram in
figure 1 that in both settings the corresponding symmetry index is si(Wy s8) = —1, which predicts the
emergence of edge states.

2.7. Eigenfunctions and eigenvalues

To compute the eigenfunctions of Win both settings, we first note that Wand -« commute on the +1-
eigenspaces of W. Therefore, we can jointly diagonalize Wand -y on these eigenspaces. The (un-normalised)
eigenvectors ¢} of 7, in (8) are of the form

B icos(6,)
70 = (—(sin(@ + x))’ (12

where x € {41, —1} denotes the chirality, i.e. the eigenvalue of . Since edge-states of decoupled translation
invariant systems have to decay exponentially in the bulk [61] and we are only interested in eigenfunctions of the
walk Wlocated to the right, we choose the following ansatz:

0 x<0
Py (x) =19 vy x=0, fulfilling the eigenvalue equation W¢Y = A¢. (13)
wroy x>0

Here, the free parameter a takes care of the boundary condition which is determined by the choice of the
decoupling coin, and .z denotes the exponential decay rate away from the boundary. Note that ¢ is normalizable
if|u] < 1.Tosolve for 1, we evaluate the eigenvalue equation in the bulk, i.e. without taking the boundary into
account. Thisleads to

0= Acos(Bp)p — x sin(6) — 1, (14)
0 = xcos(Br)p — Asin(6r) — xA, (15)
which are solved by
po 0 = 5, (16)
In both settings A and B with 6, = 7/4 and 0, = 37/4, respectively, we have
lu(=1, DI = lu@, DI = 1 + V2| > 1, 17
(=1, =D| = |p@d, =D| =1 — V2| < L (18)

Therefore, by the condition || < 1in our setting the eigenfunction located to the right of the bulk must have
chirality y = —1.
In order to determine a we have to take into account the boundary condition. Choosing the solutions of the

eigenvalue equation with x = —1 leads to the following equations for a:
0 = acos(6,)(\ + sin(8))), (19)
0=(a— (1 — sin(f) A (20)

Note that the first equation is actually independent of a whenever a = 0. Hence, the first equation rules out one
of the two possibilities in (18). We get A = —1for§; = 7/2 (setting A)and A = 1 for§; = —m/2 (setting B). In
both settings, however, we must have a = 1 for the second equation to be satisfied.

Inserting a, x and Ainto (12), (13) and (16), we get the following eigenfunctions located to the right

0 x <0

0= ) o

with the normalisation factor ¢ = (1 + +2)(1 — sin(6,))"2 and#, = /4 for setting A and 6, = 37 /4 for
setting B, respectively. Note, that in both settings (), ) takes the same value (1 — /2).
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det®

Figure 3. Schematic of our setup: the light is coupled in and out of the setup with probabilistic in- and outcouplers. The coin operation
is carried out with a static Solei-Babinet compensator (SBC) and a dynamic electro-optic modulator (EOM). The step operation is
carried out by splitting the light into two fibres of different length. The detection unit allows for polarisation-resolved read-out.

3. Experimental implementation

3.1. Time-multiplexing setup

The realisation of the two described settings and the direct measurement of the eigenvalues require a stable,
flexible experimental platform, as a phase-stable evolution incorporating a dynamic coin operation has to be
ensured over a sufficiently large number of steps. Our system of choice relies on a well-established time-
multiplexed architecture utilising fibre loops for DTQW [47, 48, 50]. The dynamic coin operation implemented
with a fast-switching electro-optic modulator (EOM) makes it suitable for a wide range of experiments,
including the investigation of topological phenomena [22, 58].

Previous photonic implementations allowed for accessing topological invariants associated with probability
distributions or amplitudes within a certain step of the walk [9, 22, 65-69]. However, topological properties can
also manifest themselves in the emergence of eigenstates with associated eigenvalues that are revealed by the
phase relation between the walker’s wavefunctions for two consecutive steps. So far, this phase relation has not
been investigated experimentally. By interfering the walker with a reference of fixed phase, we are now able to
probe this feature as well.

Our implementation relies on a photonic walker implemented by an attenuated coherent laser pulse with
its polarisation representing the internal (coin) degree of freedom. In this way, our system makes use of the
equivalence of coherentlight and a single quantum particle when propagating in a linear optical
network [70].

Figure 3 shows the physical implementation of the quantum walk setup: Our time-multiplexing architecture
relies on translating the external (position) degree of freedom of the walker into the time domain by splitting the
pulses up spatially, routing them through fibres of different length and subsequently merging the two paths
again. This translation in time corresponds to the shift operation according to (2). The ratio of this probabilistic
splitting taking place at polarising beam splitters (PBS) is determined by the polarisation state of the walker. This
internal degree of freedom is acted upon by coin operations (see (6) ) implemented with static (Soleil-Babinet
compensator (SBC)) and dynamic (EOM based on Pockels cell, EOM) polarisation optics. The remarkable
characteristic of the EOM is that its switching speed allows for addressing individual positions within the walk.
This dynamic coin enables us to implement an alternating coin needed for the split-step scheme (see (10) and
(11)) as well as the reflecting and transmitting coin operations indispensable in directing the reference pulse
alonga certain path (see section 3.3). Note that implementing a protocol according to (7) means that an actual
step in the quantum walk requires two roundtrips through the setup. The polarisation degree of freedom can
also be accessed in the read-out process, since our detection unit comprising another PBS and 2 avalanche
photo-diodes is polarisation-resolving.
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Figure 4. Schematic of our implementation of a split-step quantum walk followed by a phase readout via the interference method.
Squares with T' denote a transmission operation, while R refers to reflection and C to mixing coins, for which the exact form can be
different depending on setting and position.

3.2. Eigenstate distillation

Since the exponentially localised eigenstate cannot be excited directly with an initial state just occupying one
position, we need a method to prepare an approximate eigenstate of the system. In order to do so, we make use of
the spreading behaviour of the split-step quantum walk. In systems for which the translational invariance is only
broken at the edge, the eigenstates are exponentially localised [61]. If we choose an initial state near aboundary
and let the system evolve for some time, the components of the state which have no overlap with the localised
state will propagate away from the boundary, while the content which overlaps will stay. Consequently, we
concentrate our study onto the three positions near the boundary, which is justified due to the exponential decay
of the state (see equation (21)). By renormalizing the remaining state, we prepare an approximate eigenfunction.
For quantifying how closely we have approached the theoretically expected distribution, we use the similarity
which is obtained by summing up the square roots of the products of the theoretical and experimental
probabilities for the relevant positions within the step that is examined. It can possibly assume values between 0
(no overlap of intensities) and 1 (perfect overlap of intensities)

PI({I)};CCO) . PI(_Ie,’;P) + Z /P\(;gceo) . P\(z’;P)
X

. (22)

3.3.Phase-reference method
Figure 4 illustrates how the dynamic coin operation can be harnessed to implement a split-step quantum walk
followed by a phase readout via the interference method: by applying a mixing coin at the initial position
(marked C) the walker is split into a vertical component travelling through the shorter fibre, i.e. being translated
to theleft in the schematic and a horizontal component running through the longer fibre, which corresponds to
atranslation to the right. The part going to the left constitutes the reference. In order to prevent it from mixing
with the split-step walk taking place on the right as well as from losing intensity to positions that are not on the
desired path, the EOM switches to identity (marked T for transmission in figure 4) on the positions where the
reference is found. For the phase read-out the reference needs to interfere with the light having undergone the
walk, so the travelling direction is inverted by switching a reflection (marked R in figure 4) in the middle of the
propagation.

The light translated to the right in the initial splitting constitutes the input state of the split-step quantum
walk with decoupling. The decoupling is realised by a reflection operation implemented on the decoupling

8
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position. The split-step walk (see (10) and (11)) incorporates a mixing coin (indicated by Cin figure 4) on even
positions and the identity coin, corresponding to a transmission operation, on uneven positions.

The scheme shown in figure 4, (a) brings the reference to interfere with the vertical light ending up at
position 0 of the split-step walk. At the position where the light from the walk and reference interfere a mixing
coin has to be applied. The ratio of the intensities at the two detection positions (marked by detectors) then
allows obtaining information on the phase relation. All polarisations, positions and steps can be accessed
analogously, as long as the proper routing of the reference and the pulse under investigation can be ensured. The
basic principle remains the same in all runs, but the actual positions of the switchings differ. For this purpose, a
flexible dynamic coin operation is indispensable.

We access two regimes with topologically different eigenvalues by applying a coin of either Cpy_; = e 15
for an eigenvalue of —1 (setting A, (10)) or CEVH = e~%i" foran eigenvalue of +1 (setting B, (11)) and
T = ei%07 — | for the transmission as wellas R = e~1% 3 for the reflection. All of these coins can be
implemented with a combination of static SBC and dynamic EOM operations.

The interference of a certain component of the walker with the reference together with the application of a
mixing coin (in this case the balanced Hadamard coin Ciy,4) results in the following expression for the
wavefunction at the position where the interference takes place (labelled ‘Interference’ in figure 4):

. eiuwm 1 /1 1 eiuwm
&) = Cuaa| . - , . 23
| > Hd[ e'“'\/I_r] \/E(l 1)[ela,\/1_r] (23)

Here a,, and a, denote the phase of the walker resp. of the reference. /I, and /1, are the square roots of the
walker’s and the reference’s intensities. The detected intensities Iy and Iy for the horizontal and the vertical
detector are then given by the following expression:

1 .
By = (e + I = 21, - L sin(ar — ay)))
1 .
="+ L+ 21y - L sin(ar — o). (24)
Thus we can deduce the phase difference between the reference and a certain component of the walker from
the measured intensities at the read-out positions (marked by a detector symbol in figure 4):
Iy —In

2L - VI

Note that the M-parameter given by this formulais sin(o; — «,), which is not an injective function.
However, it still provides a clear distinction between cases in which we expect an eigenvalue of 1 and cases with
an eigenvalue of —1.

M = sin(oy — ay) = (25)

Distinguishing these eigenvalues requires monitoring how the M-parameter changes from step to step. For
an eigenvalue of —1 (setting A), the walker’s phase a, is expected to change by 7, while for an eigenvalue of 1
(setting B) it is either 0 or integer multiples of 27. Since the phase of the reference o, can be assumed to be
constant for all numbers of steps, monitoring the step-wise evolution of the M-parameter for the two settings
should clearly reveal the different eigenvalues. In the experiment, the eigenvalues will be manifested in the
relative intensities of horizontal and vertical light at the read-out positions. Accessing the eigenvalues requires
the read-out of both polarisations for the three inner positions. Furthermore, the state of the walker over 3 steps
(6, 7 and 8) is monitored. Since each measurement just yields information for a certain position, polarisation and
step, obtaining the full information makes 18 individual measurement runs necessary. Observing the differences

between settings A and B doubles the number of measurements required, so that eventually 36 data sets have to
be taken.

4, Results

As outlined previously, the experiment aims at accessing the evolution of eigenvalues over three consecutive
steps. As we are limited by losses to numbers of physical roundtrips around 22, the actual state of the walker will
constitute an approximation of the ideal eigenstate. We quantify the quality of the approximation by calculating
the similarity between the experimental intensity and the ideal eigenstate according to (22). Furthermore, the
phase-reference method indicates the eigenvalue of the system under investigation.

4.1. Evolution of the wavefunction
As a certain proportion of the intensity is outcoupled in each roundtrip, we are able to monitor its temporal
evolution. Figure 5 shows the evolution for six steps of a split-step quantum walk and the subsequent read-out of
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Figure 5. Plot of the intensity (polarisation is traced out) evolution for six steps (12 roundtrips) of a split-step quantum walk and the
subsequent read-out of the vertical (a) resp. the horizontal component (b) at position 0. Subfigures (c) and (d) illustrate the
corresponding read-out schemes: either the vertical (c) or the horizontal (d) component (marked by green arrows) from the read-out
position (marked by red dot) is brought to interference with the reference (grey arrows). Transmission and reflection operations are
conducted such that light coming from other positions or polarisations (black arrows) does not end up in the time bins reserved for
analysing the interference between reference and read-out component (marked by detector symbols). Note that the exact position of
the interference is chosen such that it allows for separating one component from the others and for having the read-out in the same
step for both polarisations.

the vertical (a) resp. the horizontal component (b) at position 0. Note that in this nomenclature 0 corresponds to
the innermost position of the eigenstate and not to the position at which the light pulse starts (see figure 4).

The plots illustrate how the reference is steered with transmission and reflection operations on the left-hand
side (marked by a grey arrow) and is then brought to interference with either the vertical or the horizontal
component (green arrow) of the walker evolving on the right-hand side. From the distribution of intensity
between the two detection bins the M-parameter can be inferred according to equation (25). During the split-
step quantum walk up to roundtrip 13, the intensity on the right-hand side either concentrates near position 0 or
runs out towards the right. In order to quantify the overlap of this intensity near position 0 with the theoretically
expected eigenstate, we calculate the similarity according to (22) for the three innermost positions (see figure 6).

While in step 6 the similarity between experiment and the ideal eigenfunction exhibits values of
0.891 + 0.019 (eigenvalue —1) resp. 0.929 £ 0.029 (eigenvalue +1), in step 8 these values attain 0.979 + 0.024
(eigenvalue —1) resp. 0.984 + 0.029 (eigenvalue +1), getting almost as close to the ideal value of 1 as the
numerically predicted state. The numerical simulation accounts for the limited number of steps but no other
experimental imperfections, it thus quantifies the effects of the finite system size in correspondence to the
deviation from the ideal similarity of 1. The difference between the numerically and the experimentally
determined similarity is accordingly due to further experimental imperfections such as slightly inhomogeneous
losses or imperfect EOM switchings. The high values of the similarity give evidence for the successful outcome of
the distillation process. Note that the difference between numerical and experimental values is slightly larger for
the scenario with eigenvalue — 1, presumably due to the fact that here the EOM needs to switch a larger coin
angle and thus the applied voltage needs to be higher. Consequently, experimental imperfections, e.g. due to
resonances of the Pockels cell used in the EOM, which are hard to quantify in an error model and subject to
ongoing investigation, are increased for the eigenvalue —1 case.

4.2. Eigenvalues

Having quantified the overlap of the measured intensities with the ideal eigenstates, the focus now shifts on
measuring the eigenvalues of the walk operator. We therefore monitor the evolution of the M-parameter (see
(25)) from step 6 to step 8 for arotation angle 64, = 1/4m, for which theory predicts an eigenvalue A = —1,and
0p = 3/4m, associated in theory with an eigenvalue of +1. This analysis is done for both horizontal and vertical
polarisation, which require separate read-out procedures as explained above.
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Figure 6. (a) Probability distribution in step 8 (roundtrip 17) of the split-step quantum walk. Orange (red) bar charts represent the
experimental (numerical) probabilities for horizontal light, while light blue (dark blue) bar charts corresponds to experimental
(numerical) data for vertical light. The large horizontal bar at positon —2 stands for the phase reference, while the components around
position 10 are those not overlaping with the eigenstate. (b) The similarity according to (22) between the ideal eigenstate and the
numerically determined state for finite step numbers (blue markers, the same for both eigenvalues) as well as the similarity between
the ideal state and the experimentally obtained state for both the regimes with eigenvalue +1 (green markers) and eigenvalue —1 (red
markers). Note that all markers correspond to integer step numbers, even though they are slightly shifted on the horizontal axis for
better readability.
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Figure 7. The evolution of the M-parameter (see (25)) for position 0 from step 6 to 8 for both horizontally (a) and vertically (b)
polarised light. The orange markers correspond to setting A with Eigenvalue —1 and the blue markers to setting B with Eigenvalue 1.
The error bars are obtained in a Monte-Carlo-Simulation accounting for the effects of an error of the coupling efficiency of 2% and an
error of the coin angle of 2° (discussed in section 4.3).

Figure 7 shows the evolution of the M-parameter (see (25)) for horizontal (a) and vertical (b) polarisation at
position 0. Setting A with Eigenvalue —1 (orange markers) and setting B with Eigenvalue +1 (blue markers) are
clearly distinguishable for both polarisations. However, the results for vertical polarisation exhibit larger error bars
as we measure a more unbalanced ratio of the intensity of the walker and the intensity of the reference. This is due to
the fact that the theoretical eigenstate as well as its experimental approximation show significantly less intensity in
vertical polarisation than in horizontal polarisation, while the reference remains the same in both cases.

The amplitudes of the eigenstates decrease by a factor of (I — +/2 ) when the position is increased by one (see
(21)). Accordingly, the errors get bigger when reading out position 1 (see figure 8). For horizontal polarisation
(figure 8 (a)) the results still reflect the theoretically expected behaviour with larger error bars than for position 0,
while for vertical polarisation a quantification of the M-parameter is no longer possible in the eighth step, as the
measured intensity of the walker is not significantly above the noise floor.

4.3. Error discussion
The eigenstate validation as well as the read-out of the M-parameter require the measurement of intensity
distributions. These distributions are subjected to inhomogeneities of the coupling efficiencies and inaccuracies
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Figure 8. The evolution of the M-parameter as in figure 7, except now for position 1. Note that the amplitude scaling of the eigenstate
does not allow for the read-out of the vertical component in step 8.

in the angles of the statically and dynamically implemented coins. Assuming errors of the coupling efficiencies of
2% and of the coin angle of 2°, we conduct a Monte-Carlo simulation in which we randomly generate 1000
different settings for these quantities within the assumed error range. For each of these settings we calculate the
deviation of the resulting numeric intensity distribution from a reference intensity distribution. This is obtained
when running the numerical simulation with the fit parameters allowing for the closest approximation of the
experimental results. The error for the individual positions and polarisations is then calculated as the standard
deviation of the randomly generated samples from the reference distribution. Eventually, the errors of the
similarity and the M-parameter are determined via error propagation from the errors of the intensities, resulting
in the error bars visible in figures 6-8.

As discussed in section 3.2, the eigenstates cannot be directly excited, but only be approximated via
distillation during the evolution of the walker. The resulting deviations from the ideal eigenstates are quantified
via the experimentally obtained similarities which are discussed in section 4.1.

5. Conclusion

We implemented a split-step quantum walk with decoupling over step numbers ranging from 6 to 8, requiring
up to 22 roundtrips in the setup. At the end of the evolution, the states in the experiment approximate the
localised eigenstates with similarities of up to 0.979 £ 0.024 resp. 0.984 + 0.029. In addition, the phase-
reference method allows for measuring eigenvalues, clearly revealing two regimes with different eigenvalues for
position 0. At position 1, lower intensities make the read-out more challenging, but still allow to clearly see the
sign flip. The application of the phase-reference method relies on the correct implementation of the decoupling.
Our setup does not only allow for decoupling, but also serves to demonstrate that the actual decoupling coin
affects the eigenvalue. In our setup the possibilities to read out the internal degree as well as to dynamically apply
different coins to different positions thus allow for investigating new aspects of topological quantum walks. As
the eigenvalues of approximate eigenstates could not be measured in previous experiments, our experiment
significantly extends the range of accessible topological signatures.
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