Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Publikationen


Liste im Research Information System öffnen

2019

Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review

B. Sain, C. Meier, T. Zentgraf, Advanced Photonics (2019)

Free from phase-matching constraints, plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms. However, high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics. All-dielectric metasurfaces, supporting both electric and magnetic Mie-type resonances in their nanostructures, have appeared as a promising alternative to nonlinear plasmonics. High-index dielectric nanostructures, allowing additional magnetic resonances, can induce magnetic nonlinear effects, which, along with electric nonlinearities, increase the nonlinear conversion efficiency. In addition, low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities, resulting in a considerable enhancement of the nonlinear processes. We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces, including the role of Mie modes, Fano resonances, and anapole moments for harmonic generation, wave mixing, and ultrafast optical switching. Furthermore, we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces. We discuss techniques to realize all-dielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.

Sain, Basudeb, Cedrik Meier, and Thomas Zentgraf. “Nonlinear Optics in All-Dielectric Nanoantennas and Metasurfaces: A Review.” Advanced Photonics, 2019. https://doi.org/10.1117/1.ap.1.2.024002.


Strong nonlinear optical response from ZnO by coupled and lattice-matched nanoantennas

M. Protte, N. Weber, C. Golla, T. Zentgraf, C. Meier, Journal of Applied Physics (2019)

Protte, Maximilian, Nils Weber, Christian Golla, Thomas Zentgraf, and Cedrik Meier. “Strong Nonlinear Optical Response from ZnO by Coupled and Lattice-Matched Nanoantennas.” Journal of Applied Physics, 2019. https://doi.org/10.1063/1.5093257.


2018

Imaging through Nonlinear Metalens Using Second Harmonic Generation

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, T. Zentgraf, Advanced Materials (2018)

Schlickriede, Christian, Naomi Waterman, Bernhard Reineke, Philip Georgi, Guixin Li, Shuang Zhang, and Thomas Zentgraf. “Imaging through Nonlinear Metalens Using Second Harmonic Generation.” Advanced Materials 30, no. 8 (2018). https://doi.org/10.1002/adma.201703843.


Multichannel vectorial holographic display and encryption

R. Zhao, B. Sain, Q. Wei, C. Tang, X. Li, T. Weiss, L. Huang, Y. Wang, T. Zentgraf, Light: Science & Applications (2018)

Zhao, Ruizhe, Basudeb Sain, Qunshuo Wei, Chengchun Tang, Xiaowei Li, Thomas Weiss, Lingling Huang, Yongtian Wang, and Thomas Zentgraf. “Multichannel Vectorial Holographic Display and Encryption.” Light: Science & Applications 7, no. 1 (2018). https://doi.org/10.1038/s41377-018-0091-0.


Spin and Geometric Phase Control Four-Wave Mixing from Metasurfaces

G. Li, G. Sartorello, S. Chen, L.H. Nicholls, K.F. Li, T. Zentgraf, S. Zhang, A.V. Zayats, Laser & Photonics Reviews (2018)

Li, Guixin, Giovanni Sartorello, Shumei Chen, Luke H. Nicholls, King Fai Li, Thomas Zentgraf, Shuang Zhang, and Anatoly V. Zayats. “Spin and Geometric Phase Control Four-Wave Mixing from Metasurfaces.” Laser & Photonics Reviews 12, no. 6 (2018). https://doi.org/10.1002/lpor.201800034.


Editorial for the theories and applications of metasurfaces

Z. Guo, X. Chen, T. Zentgraf, Journal of Physics D: Applied Physics (2018)

Guo, Zhongyi, Xianzhong Chen, and Thomas Zentgraf. “Editorial for the Theories and Applications of Metasurfaces.” Journal of Physics D: Applied Physics 51, no. 15 (2018). https://doi.org/10.1088/1361-6463/aab3b6.


Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces

X. Song, L. Huang, C. Tang, J. Li, X. Li, J. Liu, Y. Wang, T. Zentgraf, Advanced Optical Materials (2018)

Song, Xu, Lingling Huang, Chengchun Tang, Junjie Li, Xiaowei Li, Juan Liu, Yongtian Wang, and Thomas Zentgraf. “Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces.” Advanced Optical Materials 6, no. 4 (2018). https://doi.org/10.1002/adom.201701181.


Nonlinear Quasi-Phase Matching with metasurfaces

S. Heron, B. Reineke, S. Vezian, T. Zentgraf, B. Damilano, P. Genevet, in: 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), IEEE, 2018

Heron, S., B. Reineke, S. Vezian, Thomas Zentgraf, B. Damilano, and P. Genevet. “Nonlinear Quasi-Phase Matching with Metasurfaces.” In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2018. https://doi.org/10.1109/metamaterials.2018.8534176.


Controlling the phase of optical nonlinearity with plasmonic metasurfaces

S. Chen, G. Li, K.W. Cheah, T. Zentgraf, S. Zhang, Nanophotonics (2018), pp. 1013-1024

Chen, Shumei, Guixin Li, Kok Wai Cheah, Thomas Zentgraf, and Shuang Zhang. “Controlling the Phase of Optical Nonlinearity with Plasmonic Metasurfaces.” Nanophotonics 7, no. 6 (2018): 1013–24. https://doi.org/10.1515/nanoph-2018-0011.


Efficient frequency conversion by combined photonic–plasmonic mode coupling

N. Weber, S.P. Hoffmann, M. Albert, T. Zentgraf, C. Meier, Journal of Applied Physics (2018)

Weber, N., S. P. Hoffmann, M. Albert, Thomas Zentgraf, and Cedrik Meier. “Efficient Frequency Conversion by Combined Photonic–Plasmonic Mode          Coupling.” Journal of Applied Physics 123, no. 10 (2018). https://doi.org/10.1063/1.5017010.


Tailored UV Emission by Nonlinear IR Excitation from ZnO Photonic Crystal Nanocavities

S.P. Hoffmann, M. Albert, N. Weber, D. Sievers, J. Förstner, T. Zentgraf, C. Meier, ACS Photonics (2018), pp. 1933-1942

Hoffmann, Sandro P., Maximilian Albert, Nils Weber, Denis Sievers, Jens Förstner, Thomas Zentgraf, and Cedrik Meier. “Tailored UV Emission by Nonlinear IR Excitation from ZnO Photonic Crystal Nanocavities.” ACS Photonics 5 (2018): 1933–42. https://doi.org/10.1021/acsphotonics.7b01228.


Switchable Plasmonic Holograms Utilizing the Electro-Optic Effect of a Liquid-Crystal Circular Polarizer

B. Atorf, H. Rasouli, H. Mühlenbernd, B.J. Reineke, T. Zentgraf, H. Kitzerow, The Journal of Physical Chemistry C (2018), pp. 4600-4606

Atorf, Bernhard, Hoda Rasouli, Holger Mühlenbernd, Bernhard J. Reineke, Thomas Zentgraf, and Heinz Kitzerow. “Switchable Plasmonic Holograms Utilizing the Electro-Optic Effect of a Liquid-Crystal Circular Polarizer.” The Journal of Physical Chemistry C 122, no. 8 (2018): 4600–4606. https://doi.org/10.1021/acs.jpcc.7b12609.


Metasurface holography: from fundamentals to applications

L. Huang, S. Zhang, T. Zentgraf, Nanophotonics (2018)

Huang, Lingling, Shuang Zhang, and Thomas Zentgraf. “Metasurface Holography: From Fundamentals to Applications.” Nanophotonics 0, no. 0 (2018). https://doi.org/10.1515/nanoph-2017-0118.


Near-field plasmonic beam engineering by complex amplitude modulation based on metasurface (Conference Presentation)

L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, Y. Wang, T. Zentgraf, L. Huang, X. Song, in: Nanophotonics VII, SPIE, 2018

Sun, Lin, Xiaomeng Zhang, Ruizhe Zhao, Xiaowei Li, Jia Wang, Benfeng Bai, Yongtian Wang, Thomas Zentgraf, Lingling Huang, and Xu Song. “Near-Field Plasmonic Beam Engineering by Complex Amplitude Modulation Based on Metasurface (Conference Presentation).” In Nanophotonics VII, edited by David L. Andrews, Jean-Michel Nunzi, Andreas Ostendorf, and Angus J. Bain. SPIE, 2018. https://doi.org/10.1117/12.2303819.


Nanoscale Polarization Manipulation and Encryption Based on Dielectric Metasurfaces

R. Zhao, L. Huang, C. Tang, J. Li, X. Li, Y. Wang, T. Zentgraf, Advanced Optical Materials (2018)

Zhao, Ruizhe, Lingling Huang, Chengchun Tang, Junjie Li, Xiaowei Li, Yongtian Wang, and Thomas Zentgraf. “Nanoscale Polarization Manipulation and Encryption Based on Dielectric Metasurfaces.” Advanced Optical Materials, 2018. https://doi.org/10.1002/adom.201800490.


Third Harmonic Generation Enhanced by Multipolar Interference in Complementary Silicon Metasurfaces

S. Chen, M. Rahmani, K.F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, S. Zhang, ACS Photonics (2018), pp. 1671-1675

Chen, Shumei, Mohsen Rahmani, King Fai Li, Andrey Miroshnichenko, Thomas Zentgraf, Guixin Li, Dragomir Neshev, and Shuang Zhang. “Third Harmonic Generation Enhanced by Multipolar Interference in Complementary Silicon Metasurfaces.” ACS Photonics 5, no. 5 (2018): 1671–75. https://doi.org/10.1021/acsphotonics.7b01423.


Imaging the rainbow

T. Zentgraf, Nature Nanotechnology (2018), pp. 179-180

Zentgraf, Thomas. “Imaging the Rainbow.” Nature Nanotechnology 13, no. 3 (2018): 179–80. https://doi.org/10.1038/s41565-018-0062-x.


Switchable Plasmonic Metasurface Utilizing the Electro-Optic Kerr Effect of a Blue Phase Liquid Crystal

B. Atorf, S. Friesen, R. Rennerich, H. Mühlenbernd, T. Zentgraf, H. Kitzerow, Polymer Science, Series C (2018), pp. 55-62

Atorf, Bernhard, Simon Friesen, Roman Rennerich, Holger Mühlenbernd, Thomas Zentgraf, and Heinz Kitzerow. “Switchable Plasmonic Metasurface Utilizing the Electro-Optic Kerr Effect of a Blue Phase Liquid Crystal.” Polymer Science, Series C, 2018, 55–62. https://doi.org/10.1134/s1811238218010010.


2017

Manipulation of vector beam polarization with geometric metasurfaces

Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, S. Zhang, Optics Express (2017)

Guo, Qinghua, Christian Schlickriede, Dongyang Wang, Hongchao Liu, Yuanjiang Xiang, Thomas Zentgraf, and Shuang Zhang. “Manipulation of Vector Beam Polarization with Geometric Metasurfaces.” Optics Express 25, no. 13 (2017). https://doi.org/10.1364/oe.25.014300.


Beam switching and bifocal zoom lensing using active plasmonic metasurfaces

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen, Light: Science & Applications (2017)

Yin, Xinghui, Tobias Steinle, Lingling Huang, Thomas Taubner, Matthias Wuttig, Thomas Zentgraf, and Harald Giessen. “Beam Switching and Bifocal Zoom Lensing Using Active Plasmonic Metasurfaces.” Light: Science & Applications 6, no. 7 (2017). https://doi.org/10.1038/lsa.2017.16.


Volumetric Generation of Optical Vortices with Metasurfaces

L. Huang, X. Song, B. Reineke, T. Li, X. Li, J. Liu, S. Zhang, Y. Wang, T. Zentgraf, ACS Photonics (2017), pp. 338-346

Huang, Lingling, Xu Song, Bernhard Reineke, Tianyou Li, Xiaowei Li, Juan Liu, Shuang Zhang, Yongtian Wang, and Thomas Zentgraf. “Volumetric Generation of Optical Vortices with Metasurfaces.” ACS Photonics, 2017, 338–46. https://doi.org/10.1021/acsphotonics.6b00808.


Double resonant plasmonic nanoantennas for efficient second harmonic generation in zinc oxide

N. Weber, M. Protte, F. Walter, P. Georgi, T. Zentgraf, C. Meier, Physical Review B (2017)

Weber, Nils, Maximilian Protte, Felicitas Walter, Philip Georgi, Thomas Zentgraf, and Cedrik Meier. “Double Resonant Plasmonic Nanoantennas for Efficient Second Harmonic Generation in Zinc Oxide.” Physical Review B 95, no. 20 (2017). https://doi.org/10.1103/physrevb.95.205307.


Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation

G. Li, L. Wu, K.F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E.Y.B. Pun, T. Zentgraf, K.W. Cheah, Y. Luo, S. Zhang, Nano Letters (2017), pp. 7974-7979

Li, Guixin, Lin Wu, King F. Li, Shumei Chen, Christian Schlickriede, Zhengji Xu, Siya Huang, et al. “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation.” Nano Letters 17, no. 12 (2017): 7974–79. https://doi.org/10.1021/acs.nanolett.7b04451.


Nonlinear photonic metasurfaces

G. Li, S. Zhang, T. Zentgraf, Nature Reviews Materials (2017)

Li, Guixin, Shuang Zhang, and Thomas Zentgraf. “Nonlinear Photonic Metasurfaces.” Nature Reviews Materials 2, no. 5 (2017). https://doi.org/10.1038/natrevmats.2017.10.


Ultrathin Nonlinear Metasurface for Optical Image Encoding

F. Walter, G. Li, C. Meier, S. Zhang, T. Zentgraf, Nano Letters (2017), pp. 3171-3175

Walter, Felicitas, Guixin Li, Cedrik Meier, Shuang Zhang, and Thomas Zentgraf. “Ultrathin Nonlinear Metasurface for Optical Image Encoding.” Nano Letters 17, no. 5 (2017): 3171–75. https://doi.org/10.1021/acs.nanolett.7b00676.


Single-pixel computational ghost imaging with helicity-dependent metasurface hologram

H. Liu, B. Yang, Q. Guo, J. Shi, C. Guan, G. Zheng, H. Mühlenbernd, G. Li, T. Zentgraf, S. Zhang, Science Advances (2017)

Liu, Hong-Chao, Biao Yang, Qinghua Guo, Jinhui Shi, Chunying Guan, Guoxing Zheng, Holger Mühlenbernd, Guixin Li, Thomas Zentgraf, and Shuang Zhang. “Single-Pixel Computational Ghost Imaging with Helicity-Dependent Metasurface Hologram.” Science Advances 3, no. 9 (2017). https://doi.org/10.1126/sciadv.1701477.


Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes

P. Prajongtat, S. Sriyab, T. Zentgraf, S. Hannongbua, Molecular Physics (2017), pp. 9-18

Prajongtat, Pongthep, Suwannee Sriyab, Thomas Zentgraf, and Supa Hannongbua. “Optimisation of Stability and Charge Transferability of Ferrocene-Encapsulated Carbon Nanotubes.” Molecular Physics 116, no. 1 (2017): 9–18. https://doi.org/10.1080/00268976.2017.1359348.


Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces

P. Georgi, C. Schlickriede, G. Li, S. Zhang, T. Zentgraf, Optica (2017)

Georgi, Philip, Christian Schlickriede, Guixin Li, Shuang Zhang, and Thomas Zentgraf. “Rotational Doppler Shift Induced by Spin-Orbit Coupling of Light at Spinning Metasurfaces.” Optica 4, no. 8 (2017). https://doi.org/10.1364/optica.4.001000.


Directional Emission from Dielectric Leaky-Wave Nanoantennas

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, S. Linden, Nano Letters (2017), pp. 4178-4183

Peter, Manuel, Andre Hildebrandt, Christian Schlickriede, Kimia Gharib, Thomas Zentgraf, Jens Förstner, and Stefan Linden. “Directional Emission from Dielectric Leaky-Wave Nanoantennas.” Nano Letters 17, no. 7 (2017): 4178–83. https://doi.org/10.1021/acs.nanolett.7b00966.


2016

Rotational Doppler effect in nonlinear optics

G. Li, T. Zentgraf, S. Zhang, Nature Physics (2016), pp. 736-740

Li, Guixin, Thomas Zentgraf, and Shuang Zhang. “Rotational Doppler Effect in Nonlinear Optics.” Nature Physics 12, no. 8 (2016): 736–40. https://doi.org/10.1038/nphys3699.


Designermaterialien für nichtlineare Optik

H. Probst, T. Zentgraf, Physik in unserer Zeit (2016), pp. 84-89

Probst, Heike, and Thomas Zentgraf. “Designermaterialien Für Nichtlineare Optik.” Physik in Unserer Zeit 47, no. 2 (2016): 84–89. https://doi.org/10.1002/piuz.201601427.


Helicity-Preserving Omnidirectional Plasmonic Mirror

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, J. Li, Advanced Optical Materials (2016), pp. 654-658

Xiao, Shiyi, Holger Mühlenbernd, Guixin Li, Mitchell Kenney, Fu Liu, Thomas Zentgraf, Shuang Zhang, and Jensen Li. “Helicity-Preserving Omnidirectional Plasmonic Mirror.” Advanced Optical Materials 4, no. 5 (2016): 654–58. https://doi.org/10.1002/adom.201500705.


Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region

Y. Grynko, T. Zentgraf, T. Meier, J. Förstner, Applied Physics B (2016)

Grynko, Yevgen, Thomas Zentgraf, Torsten Meier, and Jens Förstner. “Simulations of High Harmonic Generation from Plasmonic Nanoparticles in the Terahertz Region.” Applied Physics B 122, no. 9 (2016). https://doi.org/10.1007/s00340-016-6510-0.


Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities

S. Chen, F. Zeuner, M. Weismann, B. Reineke, G. Li, V.K. Valev, K.W. Cheah, N.C. Panoiu, T. Zentgraf, S. Zhang, Advanced Materials (2016), pp. 2992-2999

Chen, Shumei, Franziska Zeuner, Martin Weismann, Bernhard Reineke, Guixin Li, Ventsislav Kolev Valev, Kok Wai Cheah, Nicolae Coriolan Panoiu, Thomas Zentgraf, and Shuang Zhang. “Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities.” Advanced Materials 28, no. 15 (2016): 2992–99. https://doi.org/10.1002/adma.201505640.


Doppler-Effekt für rotierende Objekte

T. Zentgraf, Physik in unserer Zeit (2016), pp. 163-164

Zentgraf, Thomas. “Doppler-Effekt Für Rotierende Objekte.” Physik in Unserer Zeit 47, no. 4 (2016): 163–64. https://doi.org/10.1002/piuz.201690063.


Spin and wavelength multiplexed nonlinear metasurface holography

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. Qiu, J. Liu, Y. Wang, S. Zhang, T. Zentgraf, Nature Communications (2016)

Ye, Weimin, Franziska Zeuner, Xin Li, Bernhard Reineke, Shan He, Cheng-Wei Qiu, Juan Liu, Yongtian Wang, Shuang Zhang, and Thomas Zentgraf. “Spin and Wavelength Multiplexed Nonlinear Metasurface Holography.” Nature Communications 7 (2016). https://doi.org/10.1038/ncomms11930.


2015

Coupling Mediated Coherent Control of Localized Surface Plasmon Polaritons

F. Zeuner, M. Muldarisnur, A. Hildebrandt, J. Förstner, T. Zentgraf, Nano Letters (2015), pp. 4189-4193

Zeuner, Franziska, Mulda Muldarisnur, Andre Hildebrandt, Jens Förstner, and Thomas Zentgraf. “Coupling Mediated Coherent Control of Localized Surface Plasmon Polaritons.” Nano Letters 15, no. 6 (2015): 4189–93. https://doi.org/10.1021/acs.nanolett.5b01381.


Metasurface holograms reaching 80% efficiency

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Nature Nanotechnology (2015), pp. 308-312

Zheng, Guoxing, Holger Mühlenbernd, Mitchell Kenney, Guixin Li, Thomas Zentgraf, and Shuang Zhang. “Metasurface Holograms Reaching 80% Efficiency.” Nature Nanotechnology 10, no. 4 (2015): 308–12. https://doi.org/10.1038/nnano.2015.2.


Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, T. Zentgraf, Advanced Materials (2015), pp. 6444-6449

Huang, Lingling, Holger Mühlenbernd, Xiaowei Li, Xu Song, Benfeng Bai, Yongtian Wang, and Thomas Zentgraf. “Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces.” Advanced Materials 27, no. 41 (2015): 6444–49. https://doi.org/10.1002/adma.201502541.


Amplitude- and Phase-Controlled Surface Plasmon Polariton Excitation with Metasurfaces

H. Mühlenbernd, P. Georgi, N. Pholchai, L. Huang, G. Li, S. Zhang, T. Zentgraf, ACS Photonics (2015), pp. 124-129

Mühlenbernd, Holger, Philip Georgi, Nitipat Pholchai, Lingling Huang, Guixin Li, Shuang Zhang, and Thomas Zentgraf. “Amplitude- and Phase-Controlled Surface Plasmon Polariton Excitation with Metasurfaces.” ACS Photonics 3, no. 1 (2015): 124–29. https://doi.org/10.1021/acsphotonics.5b00536.


Continuous control of the nonlinearity phase for harmonic generations

G. Li, S. Chen, N. Pholchai, B. Reineke, P.W.H. Wong, E.B. Pun, K.W. Cheah, T. Zentgraf, S. Zhang, Nature Materials (2015), pp. 607-612

Li, Guixin, Shumei Chen, Nitipat Pholchai, Bernhard Reineke, Polis Wing Han Wong, Edwin Yue Bun Pun, Kok Wai Cheah, Thomas Zentgraf, and Shuang Zhang. “Continuous Control of the Nonlinearity Phase for Harmonic Generations.” Nature Materials 14, no. 6 (2015): 607–12. https://doi.org/10.1038/nmat4267.


Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

C.A. Bader, F. Zeuner, M.H.W. Bader, T. Zentgraf, C. Meier, Journal of Applied Physics (2015)

Bader, Christina A., Franziska Zeuner, Manuel H. W. Bader, Thomas Zentgraf, and Cedrik Meier. “Nonlinear Optical Sub-Bandgap Excitation of ZnO-Based Photonic Resonators.” Journal of Applied Physics 118, no. 21 (2015). https://doi.org/10.1063/1.4936768.


2014

Effect of Alignment on a Liquid Crystal/Split-Ring Resonator Metasurface

B. Atorf, H. Mühlenbernd, M. Muldarisnur, T. Zentgraf, H. Kitzerow, ChemPhysChem (2014), pp. 1470-1476

Atorf, Bernhard, Holger Mühlenbernd, Mulda Muldarisnur, Thomas Zentgraf, and Heinz Kitzerow. “Effect of Alignment on a Liquid Crystal/Split-Ring Resonator Metasurface.” ChemPhysChem 15, no. 7 (2014): 1470–76. https://doi.org/10.1002/cphc.201301069.


Symmetry-Selective Third-Harmonic Generation from Plasmonic Metacrystals

S. Chen, G. Li, F. Zeuner, W.H. Wong, E.Y.B. Pun, T. Zentgraf, K.W. Cheah, S. Zhang, Physical Review Letters (2014)

Chen, Shumei, Guixin Li, Franziska Zeuner, Wing Han Wong, Edwin Yue Bun Pun, Thomas Zentgraf, Kok Wai Cheah, and Shuang Zhang. “Symmetry-Selective Third-Harmonic Generation from Plasmonic Metacrystals.” Physical Review Letters 113, no. 3 (2014). https://doi.org/10.1103/physrevlett.113.033901.


Manipulating wave propagation with geometric metasurfaces: fundamentals and applications

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, in: Plasmonics, SPIE, 2014

Huang, Lingling, Xianzhong Chen, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Thomas Zentgraf, and Shuang Zhang. “Manipulating Wave Propagation with Geometric Metasurfaces: Fundamentals and Applications.” In Plasmonics, edited by Xing Zhu, Satoshi Kawata, David J. Bergman, Peter Nordlander, and Francisco Javier García de Abajo. SPIE, 2014. https://doi.org/10.1117/12.2071744.


Hochauflösende Holografie

T. Zentgraf, Physik in unserer Zeit (2014), pp. 58-59

Zentgraf, Thomas. “Hochauflösende Holografie.” Physik in Unserer Zeit 45, no. 2 (2014): 58–59. https://doi.org/10.1002/piuz.201490026.


Ag‐nanoparticles in PA-templates

A. Ezhova, J. Lindner, M. Muldarisnur, T. Zentgraf, K. Huber, 2014

Ezhova, A., Jörg Lindner, M. Muldarisnur, Thomas Zentgraf, and K. Huber. “Ag‐nanoparticles in PA-Templates,” 2014.


Electro-optic tuning of split ring resonators embedded in a liquid crystal

B. Atorf, H. Mühlenbernd, M. Muldarisnur, T. Zentgraf, H. Kitzerow, Optics Letters (2014)

Atorf, Bernhard, Holger Mühlenbernd, Mulda Muldarisnur, Thomas Zentgraf, and Heinz Kitzerow. “Electro-Optic Tuning of Split Ring Resonators Embedded in a Liquid Crystal.” Optics Letters 39, no. 5 (2014). https://doi.org/10.1364/ol.39.001129.


2013

Blue-green emitting microdisks using low-temperature-grown ZnO on patterned silicon substrates

M. Ruth, T. Zentgraf, C. Meier, Optics Express (2013)

Ruth, Marcel, Thomas Zentgraf, and Cedrik Meier. “Blue-Green Emitting Microdisks Using Low-Temperature-Grown ZnO on Patterned Silicon Substrates.” Optics Express 21, no. 21 (2013). https://doi.org/10.1364/oe.21.025517.


Interference-induced asymmetric transmission through a monolayer of anisotropic chiral metamolecules

S. Zhang, F. Liu, T. Zentgraf, J. Li, Physical Review A (2013)

Zhang, Shuang, Fu Liu, Thomas Zentgraf, and Jensen Li. “Interference-Induced Asymmetric Transmission through a Monolayer of Anisotropic Chiral Metamolecules.” Physical Review A 88, no. 2 (2013). https://doi.org/10.1103/physreva.88.023823.


Three-dimensional optical holography using a plasmonic metasurface

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, S. Zhang, Nature Communications (2013)

Huang, Lingling, Xianzhong Chen, Holger Mühlenbernd, Hao Zhang, Shumei Chen, Benfeng Bai, Qiaofeng Tan, et al. “Three-Dimensional Optical Holography Using a Plasmonic Metasurface.” Nature Communications 4 (2013). https://doi.org/10.1038/ncomms3808.


Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, S. Zhang, Advanced Optical Materials (2013), pp. 517-521

Chen, Xianzhong, Lingling Huang, Holger Mühlenbernd, Guixin Li, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Cheng-Wei Qiu, Thomas Zentgraf, and Shuang Zhang. “Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens.” Advanced Optical Materials 1, no. 7 (2013): 517–21. https://doi.org/10.1002/adom.201300102.


Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Light: Science & Applications (2013), pp. e70-e70

Huang, Lingling, Xianzhong Chen, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Thomas Zentgraf, and Shuang Zhang. “Helicity Dependent Directional Surface Plasmon Polariton Excitation Using a Metasurface with Interfacial Phase Discontinuity.” Light: Science & Applications 2, no. 3 (2013): e70–e70. https://doi.org/10.1038/lsa.2013.26.


Metalens with convex and concave functionality

S. Zhang, X. Chen, L. Huang, B. Bai, Q. Tan, G. Jin, H. Mühlenbernd, T. Zentgraf, G. Li, C. Qiu, SPIE Newsroom (2013)

Zhang, Shuang, Xianzhong Chen, Lingling Huang, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Holger Mühlenbernd, Thomas Zentgraf, Guixin Li, and Cheng-Wei Qiu. “Metalens with Convex and Concave Functionality.” SPIE Newsroom, 2013. https://doi.org/10.1117/2.1201304.004812.


2012

Mapping the near-field dynamics in plasmon-induced transparency

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, X. Zhang, Physical Review B (2012)

Ye, Ziliang, Shuang Zhang, Yuan Wang, Yong-Shik Park, Thomas Zentgraf, Guy Bartal, Xiaobo Yin, and Xiang Zhang. “Mapping the Near-Field Dynamics in Plasmon-Induced Transparency.” Physical Review B 86, no. 15 (2012). https://doi.org/10.1103/physrevb.86.155148.


Dual-polarity plasmonic metalens for visible light

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, T. Zentgraf, Nature Communications (2012)

Chen, Xianzhong, Lingling Huang, Holger Mühlenbernd, Guixin Li, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Cheng-Wei Qiu, Shuang Zhang, and Thomas Zentgraf. “Dual-Polarity Plasmonic Metalens for Visible Light.” Nature Communications 3 (2012). https://doi.org/10.1038/ncomms2207.


Compact Magnetic Antennas for Directional Excitation of Surface Plasmons

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, X. Zhang, Nano Letters (2012), pp. 4853-4858

Liu, Yongmin, Stefano Palomba, Yongshik Park, Thomas Zentgraf, Xiaobo Yin, and Xiang Zhang. “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons.” Nano Letters 12, no. 9 (2012): 4853–58. https://doi.org/10.1021/nl302339z.


Control of plasmon dynamics in coupled plasmonic hybrid mode microcavities

N.D. Lanzillotti-Kimura, T. Zentgraf, X. Zhang, Physical Review B (2012)

Lanzillotti-Kimura, N. D., Thomas Zentgraf, and X. Zhang. “Control of Plasmon Dynamics in Coupled Plasmonic Hybrid Mode Microcavities.” Physical Review B 86, no. 4 (2012). https://doi.org/10.1103/physrevb.86.045309.


Slow-light dispersion by transparent waveguide plasmon polaritons

A. Ishikawa, R.F. Oulton, T. Zentgraf, X. Zhang, Physical Review B (2012)

Ishikawa, Atsushi, Rupert F. Oulton, Thomas Zentgraf, and Xiang Zhang. “Slow-Light Dispersion by Transparent Waveguide Plasmon Polaritons.” Physical Review B 85, no. 15 (2012). https://doi.org/10.1103/physrevb.85.155108.


Dispersionless Phase Discontinuities for Controlling Light Propagation

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Nano Letters (2012), pp. 5750-5755

Huang, Lingling, Xianzhong Chen, Holger Mühlenbernd, Guixin Li, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Thomas Zentgraf, and Shuang Zhang. “Dispersionless Phase Discontinuities for Controlling Light Propagation.” Nano Letters 12, no. 11 (2012): 5750–55. https://doi.org/10.1021/nl303031j.


2011

A Carpet Cloak for Visible Light

M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, X. Zhang, Nano Letters (2011), pp. 2825-2828

Gharghi, Majid, Christopher Gladden, Thomas Zentgraf, Yongmin Liu, Xiaobo Yin, Jason Valentine, and Xiang Zhang. “A Carpet Cloak for Visible Light.” Nano Letters 11, no. 7 (2011): 2825–28. https://doi.org/10.1021/nl201189z.


A graphene-based broadband optical modulator

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, Nature (2011), pp. 64-67

Liu, Ming, Xiaobo Yin, Erick Ulin-Avila, Baisong Geng, Thomas Zentgraf, Long Ju, Feng Wang, and Xiang Zhang. “A Graphene-Based Broadband Optical Modulator.” Nature 474, no. 7349 (2011): 64–67. https://doi.org/10.1038/nature10067.


Towards the Origin of the Nonlinear Response in Hybrid Plasmonic Systems

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, H. Giessen, Physical Review Letters (2011)

Utikal, Tobias, Thomas Zentgraf, Thomas Paul, Carsten Rockstuhl, Falk Lederer, Markus Lippitz, and Harald Giessen. “Towards the Origin of the Nonlinear Response in Hybrid Plasmonic Systems.” Physical Review Letters 106, no. 13 (2011). https://doi.org/10.1103/physrevlett.106.133901.


Development of Bulk Optical Negative Index Fishnet Metamaterials: Achieving a Low-Loss and Broadband Response Through Coupling

J. Valentine, S. Zhang, T. Zentgraf, X. Zhang, Proceedings of the IEEE (2011), pp. 1682-1690

Valentine, Jason, Shuang Zhang, Thomas Zentgraf, and Xiang Zhang. “Development of Bulk Optical Negative Index Fishnet Metamaterials: Achieving a Low-Loss and Broadband Response Through Coupling.” Proceedings of the IEEE 99, no. 10 (2011): 1682–90. https://doi.org/10.1109/jproc.2010.2094593.


Tailoring the photonic band splitting in metallodielectric photonic crystal superlattices

T. Utikal, T. Zentgraf, S.G. Tikhodeev, M. Lippitz, H. Giessen, Physical Review B (2011)

Utikal, Tobias, Thomas Zentgraf, Sergei G. Tikhodeev, Markus Lippitz, and Harald Giessen. “Tailoring the Photonic Band Splitting in Metallodielectric Photonic Crystal Superlattices.” Physical Review B 84, no. 7 (2011). https://doi.org/10.1103/physrevb.84.075101.


Plasmonic Luneburg and Eaton lenses

T. Zentgraf, Y. Liu, M.H. Mikkelsen, J. Valentine, X. Zhang, Nature Nanotechnology (2011), pp. 151-155

Zentgraf, Thomas, Yongmin Liu, Maiken H. Mikkelsen, Jason Valentine, and Xiang Zhang. “Plasmonic Luneburg and Eaton Lenses.” Nature Nanotechnology 6, no. 3 (2011): 151–55. https://doi.org/10.1038/nnano.2010.282.


2010

Transformational Plasmon Optics

Y. Liu, T. Zentgraf, G. Bartal, X. Zhang, Nano Letters (2010), pp. 1991-1997

Liu, Yongmin, Thomas Zentgraf, Guy Bartal, and Xiang Zhang. “Transformational Plasmon Optics.” Nano Letters 10, no. 6 (2010): 1991–97. https://doi.org/10.1021/nl1008019.


An Optical “Janus” Device for Integrated Photonics

T. Zentgraf, J. Valentine, N. Tapia, J. Li, X. Zhang, Advanced Materials (2010), pp. 2561-2564

Zentgraf, Thomas, Jason Valentine, Nicholas Tapia, Jensen Li, and Xiang Zhang. “An Optical ‘Janus’ Device for Integrated Photonics.” Advanced Materials 22, no. 23 (2010): 2561–64. https://doi.org/10.1002/adma.200904139.


All-Liquid Photonic Microcavity Stabilized by Quantum Dots

T. Yim, T. Zentgraf, B. Min, X. Zhang, Journal of the American Chemical Society (2010), pp. 2154-2156

Yim, Tae-Jin, Thomas Zentgraf, Bumki Min, and Xiang Zhang. “All-Liquid Photonic Microcavity Stabilized by Quantum Dots.” Journal of the American Chemical Society 132, no. 7 (2010): 2154–56. https://doi.org/10.1021/ja909483w.


Far-field measurement of ultra-small plasmonic mode volume

S. Zhang, Y. Park, Y. Liu, T. Zentgraf, X. Zhang, Optics Express (2010)

Zhang, Shuang, Yong-Shik Park, Yongmin Liu, Thomas Zentgraf, and Xiang Zhang. “Far-Field Measurement of Ultra-Small Plasmonic Mode Volume.” Optics Express 18, no. 6 (2010). https://doi.org/10.1364/oe.18.006048.


Extremely low-loss slow-light modes in plasmonic dielectric hybrid systems

A. Ishikawa, R.F. Oulton, T. Zentgraf, X. Zhang, in: Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, SPIE, 2010

Ishikawa, Atsushi, Rupert F. Oulton, Thomas Zentgraf, and Xiang Zhang. “Extremely Low-Loss Slow-Light Modes in Plasmonic Dielectric Hybrid Systems.” In Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, edited by Mark I. Stockman. SPIE, 2010. https://doi.org/10.1117/12.860190.


Light-driven nanoscale plasmonic motors

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Nature Nanotechnology (2010), pp. 570-573

Liu, Ming, Thomas Zentgraf, Yongmin Liu, Guy Bartal, and Xiang Zhang. “Light-Driven Nanoscale Plasmonic Motors.” Nature Nanotechnology 5, no. 8 (2010): 570–73. https://doi.org/10.1038/nnano.2010.128.


Semiconductor plasmon laser

V.J. Sorger, R.F. Oulton, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, in: Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, SPIE, 2010

Sorger, Volker J., Rupert F. Oulton, Thomas Zentgraf, Renmin Ma, Christopher Gladden, Lun Dai, Guy Bartal, and Xiang Zhang. “Semiconductor Plasmon Laser.” In Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, edited by Mark I. Stockman. SPIE, 2010. https://doi.org/10.1117/12.859136.


2009

An optical cloak made of dielectrics

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, Nature Materials (2009), pp. 568-571

Valentine, Jason, Jensen Li, Thomas Zentgraf, Guy Bartal, and Xiang Zhang. “An Optical Cloak Made of Dielectrics.” Nature Materials 8, no. 7 (2009): 568–71. https://doi.org/10.1038/nmat2461.


Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems

T. Zentgraf, S. Zhang, R.F. Oulton, X. Zhang, Physical Review B (2009)

Zentgraf, Thomas, Shuang Zhang, Rupert F. Oulton, and Xiang Zhang. “Ultranarrow Coupling-Induced Transparency Bands in Hybrid Plasmonic Systems.” Physical Review B 80, no. 19 (2009). https://doi.org/10.1103/physrevb.80.195415.


Plasmon lasers at deep subwavelength scale

R.F. Oulton, V.J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature (2009), pp. 629-632

Oulton, Rupert F., Volker J. Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladden, Lun Dai, Guy Bartal, and Xiang Zhang. “Plasmon Lasers at Deep Subwavelength Scale.” Nature 461, no. 7264 (2009): 629–32. https://doi.org/10.1038/nature08364.


2008

Transition from thin-film to bulk properties of metamaterials

C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T.P. Meyrath, H. Giessen, Physical Review B (2008)

Rockstuhl, Carsten, Thomas Paul, Falk Lederer, Thomas Pertsch, Thomas Zentgraf, Todd P. Meyrath, and Harald Giessen. “Transition from Thin-Film to Bulk Properties of Metamaterials.” Physical Review B 77, no. 3 (2008). https://doi.org/10.1103/physrevb.77.035126.


Optical resonances of bowtie slot antennas and their geometry and material dependence

H. Guo, T.P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, H. Giessen, Optics Express (2008)

Guo, Hongcang, Todd P. Meyrath, Thomas Zentgraf, Na Liu, Liwei Fu, Heinz Schweizer, and Harald Giessen. “Optical Resonances of Bowtie Slot Antennas and Their Geometry and Material Dependence.” Optics Express 16, no. 11 (2008). https://doi.org/10.1364/oe.16.007756.


Three-dimensional optical metamaterial with a negative refractive index

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Nature (2008), pp. 376-379

Valentine, Jason, Shuang Zhang, Thomas Zentgraf, Erick Ulin-Avila, Dentcho A. Genov, Guy Bartal, and Xiang Zhang. “Three-Dimensional Optical Metamaterial with a Negative Refractive Index.” Nature 455, no. 7211 (2008): 376–79. https://doi.org/10.1038/nature07247.


Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, H. Giessen, Optics Letters (2008)

Zentgraf, Thomas, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen. “Amplitude- and Phase-Resolved Optical near Fields of Split-Ring-Resonator-Based Metamaterials.” Optics Letters 33, no. 8 (2008). https://doi.org/10.1364/ol.33.000848.


Electromagnetic induction in metamaterials

T.P. Meyrath, T. Zentgraf, C. Rockstuhl, H. Giessen, Applied Physics B (2008), pp. 107-110

Meyrath, T. P., Thomas Zentgraf, C. Rockstuhl, and H. Giessen. “Electromagnetic Induction in Metamaterials.” Applied Physics B 93, no. 1 (2008): 107–10. https://doi.org/10.1007/s00340-008-3207-z.


Near-field–induced tunability of surface plasmon polaritons in composite metallic nanostructures

A. CHRIST, G. LÉVÊQUE, O.J.F. MARTIN, T. Zentgraf, J. KUHL, C. BAUER, H. GIESSEN, S.G. TIKHODEEV, Journal of Microscopy (2008), pp. 344-353

CHRIST, A., G. LÉVÊQUE, O. J. F. MARTIN, Thomas Zentgraf, J. KUHL, C. BAUER, H. GIESSEN, and S. G. TIKHODEEV. “Near-Field–Induced Tunability of Surface Plasmon Polaritons in Composite Metallic Nanostructures.” Journal of Microscopy 229, no. 2 (2008): 344–53. https://doi.org/10.1111/j.1365-2818.2008.01911.x.


Resonances in complementary metamaterials and nanoapertures

C. Rockstuhl, T. Zentgraf, T.P. Meyrath, H. Giessen, F. Lederer, Optics Express (2008)

Rockstuhl, Carsten, Thomas Zentgraf, Todd P. Meyrath, Harald Giessen, and Falk Lederer. “Resonances in Complementary Metamaterials and Nanoapertures.” Optics Express 16, no. 3 (2008). https://doi.org/10.1364/oe.16.002080.


2007

Correlation Effects in Disordered Metallic Photonic Crystal Slabs

D. Nau, A. Schönhardt, C. Bauer, A. Christ, T. Zentgraf, J. Kuhl, M.W. Klein, H. Giessen, Physical Review Letters (2007)

Nau, D., A. Schönhardt, Ch. Bauer, A. Christ, Thomas Zentgraf, J. Kuhl, M. W. Klein, and H. Giessen. “Correlation Effects in Disordered Metallic Photonic Crystal Slabs.” Physical Review Letters 98, no. 13 (2007). https://doi.org/10.1103/physrevlett.98.133902.


Optical properties of disordered metallic photonic crystal slabs

D. Nau, A. Schönhardt, A. Christ, T. Zentgraf, C. Bauer, J. Kuhl, H. Giessen, physica status solidi (a) (2007), pp. 3848-3861

Nau, D., A. Schönhardt, A. Christ, Thomas Zentgraf, Ch. Bauer, J. Kuhl, and H. Giessen. “Optical Properties of Disordered Metallic Photonic Crystal Slabs.” Physica Status Solidi (A) 204, no. 11 (2007): 3848–61. https://doi.org/10.1002/pssa.200776411.


Lorentz model for metamaterials: Optical frequency resonance circuits

T.P. Meyrath, T. Zentgraf, H. Giessen, Physical Review B (2007)

Meyrath, T. P., Thomas Zentgraf, and H. Giessen. “Lorentz Model for Metamaterials: Optical Frequency Resonance Circuits.” Physical Review B 75, no. 20 (2007). https://doi.org/10.1103/physrevb.75.205102.


Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices: Time- and frequency-resolved nonlinear autocorrelation measurements and simulations

T. Utikal, T. Zentgraf, J. Kuhl, H. Giessen, Physical Review B (2007)

Utikal, Tobias, Thomas Zentgraf, Jürgen Kuhl, and Harald Giessen. “Dynamics and Dephasing of Plasmon Polaritons in Metallic Photonic Crystal Superlattices: Time- and Frequency-Resolved Nonlinear Autocorrelation Measurements and Simulations.” Physical Review B 76, no. 24 (2007). https://doi.org/10.1103/physrevb.76.245107.


Ultrabroadband 50-130 THz pulses generated via phase-matched difference frequency mixing in LiIO_3

T. Zentgraf, R. Huber, N.C. Nielsen, D.S. Chemla, R.A. Kaindl, Optics Express (2007)

Zentgraf, Thomas, Rupert Huber, Nils C. Nielsen, Daniel S. Chemla, and Robert A. Kaindl. “Ultrabroadband 50-130 THz Pulses Generated via Phase-Matched Difference Frequency Mixing in LiIO_3.” Optics Express 15, no. 9 (2007). https://doi.org/10.1364/oe.15.005775.


The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, F. Lederer, Optics Express (2007)

Rockstuhl, Carsten, Thomas Zentgraf, Ekaterina Pshenay-Severin, Jörg Petschulat, Arkadi Chipouline, Jürgen Kuhl, Thomas Pertsch, Harald Giessen, and Falk Lederer. “The Origin of Magnetic Polarizability in Metamaterials at Optical Frequencies - an Electrodynamic Approach.” Optics Express 15, no. 14 (2007). https://doi.org/10.1364/oe.15.008871.


Resonance hybridization in double split-ring resonator metamaterials

H. Guo, N. Liu, L. Fu, T.P. Meyrath, T. Zentgraf, H. Schweizer, H. Giessen, Optics Express (2007)

Guo, Hongcang, Na Liu, Liwei Fu, Todd P. Meyrath, Thomas Zentgraf, Heinz Schweizer, and Harald Giessen. “Resonance Hybridization in Double Split-Ring Resonator Metamaterials.” Optics Express 15, no. 19 (2007). https://doi.org/10.1364/oe.15.012095.


Babinet’s principle for optical frequency metamaterials and nanoantennas

T. Zentgraf, T.P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, F. Lederer, Physical Review B (2007)

Zentgraf, Thomas, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer. “Babinet’s Principle for Optical Frequency Metamaterials and Nanoantennas.” Physical Review B 76, no. 3 (2007). https://doi.org/10.1103/physrevb.76.033407.


Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, Applied Physics Letters (2007)

Rockstuhl, Carsten, Falk Lederer, Thomas Zentgraf, and Harald Giessen. “Enhanced Transmission of Periodic, Quasiperiodic, and Random Nanoaperture Arrays.” Applied Physics Letters 91, no. 15 (2007). https://doi.org/10.1063/1.2799240.


2006

Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission properties

T. Zentgraf, A. Christ, J. Kuhl, N.A. Gippius, S.G. Tikhodeev, D. Nau, H. Giessen, Physical Review B (2006)

Zentgraf, Thomas, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen. “Metallodielectric Photonic Crystal Superlattices: Influence of Periodic Defects on Transmission Properties.” Physical Review B 73, no. 11 (2006). https://doi.org/10.1103/physrevb.73.115103.


Optical switching in metallic photonic crystal slabs with photoaddressable polymers

D. Nau, R. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, H. Giessen, Applied Physics B (2006), pp. 543-547

Nau, D., R.P. Bertram, K. Buse, Thomas Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen. “Optical Switching in Metallic Photonic Crystal Slabs with Photoaddressable Polymers.” Applied Physics B 82, no. 4 (2006): 543–47. https://doi.org/10.1007/s00340-005-2103-z.


Resonances of split-ring resonator metamaterials in the near infrared

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Applied Physics B (2006), pp. 219-227

Rockstuhl, C., Thomas Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen. “Resonances of Split-Ring Resonator Metamaterials in the near Infrared.” Applied Physics B 84, no. 1–2 (2006): 219–27. https://doi.org/10.1007/s00340-006-2205-2.


Disorder issues in metallic photonic crystals

D. Nau, A. Schönhardt, C. Bauer, A. Christ, T. Zentgraf, J. Kuhl, H. Giessen, physica status solidi (b) (2006), pp. 2331-2343

Nau, D., A. Schönhardt, C. Bauer, A. Christ, Thomas Zentgraf, J. Kuhl, and H. Giessen. “Disorder Issues in Metallic Photonic Crystals.” Physica Status Solidi (B) 243, no. 10 (2006): 2331–43. https://doi.org/10.1002/pssb.200668054.


On the reinterpretation of resonances in split-ring-resonators at normal incidence

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, H. Giessen, Optics Express (2006)

Rockstuhl, Carsten, Falk Lederer, Christoph Etrich, Thomas Zentgraf, Jürgen Kuhl, and Harald Giessen. “On the Reinterpretation of Resonances in Split-Ring-Resonators at Normal Incidence.” Optics Express 14, no. 19 (2006). https://doi.org/10.1364/oe.14.008827.


Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal

A. Christ, T. Zentgraf, S.G. Tikhodeev, N.A. Gippius, O.J.F. Martin, J. Kuhl, H. Giessen, physica status solidi (b) (2006), pp. 2344-2348

Christ, A., Thomas Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen. “Interaction between Localized and Delocalized Surface Plasmon Polariton Modes in a Metallic Photonic Crystal.” Physica Status Solidi (B) 243, no. 10 (2006): 2344–48. https://doi.org/10.1002/pssb.200668055.


Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations

A. Christ, T. Zentgraf, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, H. Giessen, Physical Review B (2006)

Christ, A., Thomas Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen. “Controlling the Interaction between Localized and Delocalized Surface Plasmon Modes: Experiment and Numerical Calculations.” Physical Review B 74, no. 15 (2006). https://doi.org/10.1103/physrevb.74.155435.


2005

Waveguide-plasmon polaritons in photonic crystal slabs with metal nanowires

S.G. Tikhodeev, N.A. Gippius, A. Christ, T. Zentgraf, J. Kuhl, H. Giessen, physica status solidi (c) (2005), pp. 795-800

Tikhodeev, S. G., N. A. Gippius, A. Christ, Thomas Zentgraf, J. Kuhl, and H. Giessen. “Waveguide-Plasmon Polaritons in Photonic Crystal Slabs with Metal Nanowires.” Physica Status Solidi (C) 2, no. 2 (2005): 795–800. https://doi.org/10.1002/pssc.200460303.


Die maximale Anzahl anzuzeigender Publikationen wurde erreicht - alle Publikationen finden Sie im Research Infomation System.

Liste im Research Information System öffnen

Gruppenleitung

Prof. Dr. Thomas Zentgraf

Ultraschnelle Nanophotonik

Thomas Zentgraf
Telefon:
+49 5251 60-5865
Fax:
+49 5251 60-5886
Büro:
P8.3.03

Die Universität der Informationsgesellschaft