Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Donnerstag, 05.07.2018 | 16.15 - 17.00 Uhr | Hörsaal A1

Quantum simulations based on time-multiplexing quantum walks

Dr. Sonja Barkhofen

Universität Paderborn

Habilitationsvorstellungsvortrag

Photonic quantum walk systems can be considered as a standard model to describe the dynamics of quantum particles in a discretized environment and serve as a simulator for complex quantum systems, which are not as readily accessible. However, their experimental realization requires se- tups with increasing complexity in terms of number of modes and control of the system parameters.
Here, we employ an optical feedback loop based on an unbalanced Mach-Zehnder interferometer, which provides high homogeneity, precise control of the system parameters and optimal resource efficiency [1–3]. In this time-multiplexing scheme the walker’s position is mapped into the time domain including the requisite interference effects. The realisation of dynamic sinks in the walker’s dynamics by applying a deterministic in- and outcoupling enables us to study measurement induced effects and recurrence probabilities [4].
When using a looped Michelson interferometer geometry instead, we are able to implement a 4D coin space for a 1D walk by exploiting the two different travelling directions in the loop in addition to the polarization of the walker. Fast electro-optic modulators realising dynamic coin operations enable us to study coupled quantum walks and finite walks with periodic boundary conditions.

References

  1. A. Schreiber et al. “Photons Walking the Line: A Quantum Walk with Adjustable Coin Oper- ations,” PRL 104, 050502 (2010).
  2. A.Schreiberetal.“A 2D Quantum Walk Simulation of Two-Particle Dynamics,”Science 336 6077, 55–58 (2012).
  3. T.Nitscheetal.“Quantum walks with dynamical control,”New Journal of Physics 18, 063017 (2016).
  4. T. Nitsche et al. “Probing Measurement Induced Effects in Quantum Walks via Recurrence,” to appear in Science Advances (2018).

Abstract als PDF

Gruppenleitung

Prof. Dr. Thomas Zentgraf

Ultraschnelle Nanophotonik

Thomas Zentgraf
Telefon:
+49 5251 60-5865
Fax:
+49 5251 60-5886
Büro:
P8.3.03

Die Universität der Informationsgesellschaft