Our Re­search Areas

Our quantum optics laboratories are equipped with different continues wave and pulsed laser sources, cryogenic photonic probe stations, cryogenic confocal microscopes, and single photon detectors to investigate solid-state quantum light sources, quantum memories, and quantum photonic integrated circuits. Several advanced measurement setups are home-made, such as transmission spectrometers, phase-stabilized Mach-Zehnder interferometers, and Fabry-Pérot interferometers to perform state-of-the-art quantum optics experiments.

Our group's research heavily relies on nanofabrication, either in our own small fabrication facility in the A building or in the common cleanroom in the P8 building. A key factor in for these research activities are numerical optimization of our devices, for which we use state-of-the-art software solutions. Using electron beam and laser lithography system we define our nanostructures, such as photonic circuits, and use different wet and dry-etching methods to fabricate our devices.

Based on the long-lasting expertise at Paderborn University our group designs ultra-fast cryogenic electronic circuits as on-chip switches, coherent control, and read-out electronics. These circuits are first simulated and designed and later integrated into our quantum optics experiments and serve as a building block of our quantum photonic integrated circuits. We focus on coherent optoelectronic control of quantum systems, ultra-sensitive photocurrent readout as well as fast feed-forward operations.