Pu­bli­ka­ti­o­nen

2024

Derivation of Miller's rule for the nonlinear optical susceptibility of a quantum anharmonic oscillator

M.T. Meyer, A. Schindlmayr, Journal of Physics B: Atomic, Molecular and Optical Physics 57 (2024).


2022

Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response

F. Schmidt, A.L. Kozub, U. Gerstmann, W.G. Schmidt, A. Schindlmayr, in: G. Corradi, L. Kovács (Eds.), New Trends in Lithium Niobate: From Bulk to Nanocrystals, MDPI, Basel, 2022, pp. 231–248.


Programmierung und Computersimulationen

A. Schindlmayr, in: J. Gerick, A. Sommer, G. Zimmermann (Eds.), Kompetent Prüfungen gestalten: 60 Prüfungsformate für die Hochschullehre, 2nd ed., Waxmann, Münster, 2022, pp. 270–274.


A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate

F. Schmidt, A.L. Kozub, U. Gerstmann, W.G. Schmidt, A. Schindlmayr, Crystals 12 (2022).


Quasiparticle energies and optical response of RbTiOPO4 and KTiOAsO4

S. Neufeld, A. Schindlmayr, W.G. Schmidt, Journal of Physics: Materials 5 (2022).


2021

Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response

F. Schmidt, A.L. Kozub, U. Gerstmann, W.G. Schmidt, A. Schindlmayr, Crystals 11 (2021) 542.




Polaronic enhancement of second-harmonic generation in lithium niobate

A.L. Kozub, A. Schindlmayr, U. Gerstmann, W.G. Schmidt, Physical Review B 104 (2021) 174110.


2020

Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations

F. Schmidt, A.L. Kozub, T. Biktagirov, C. Eigner, C. Silberhorn, A. Schindlmayr, W.G. Schmidt, U. Gerstmann, Physical Review Research 2 (2020).


2019

Quasiparticle and excitonic effects in the optical response of KNbO3

F. Schmidt, A. Riefer, W.G. Schmidt, A. Schindlmayr, M. Imlau, F. Dobener, N. Mengel, S. Chatterjee, S. Sanna, Physical Review Materials 3 (2019).


Potassium titanyl phosphate (KTP) quasiparticle energies and optical response

S. Neufeld, A. Bocchini, U. Gerstmann, A. Schindlmayr, W.G. Schmidt, Journal of Physics: Materials 2 (2019) 045003.


2018



2017

Zn–VI quasiparticle gaps and optical spectra from many-body calculations

A. Riefer, N. Weber, J. Mund, D.R. Yakovlev, M. Bayer, A. Schindlmayr, C. Meier, W.G. Schmidt, Journal of Physics: Condensed Matter 29 (2017).


Polaron optical absorption in congruent lithium niobate from time-dependent density-functional theory

M. Friedrich, W.G. Schmidt, A. Schindlmayr, S. Sanna, Physical Review Materials 1 (2017).


Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory

M. Friedrich, W.G. Schmidt, A. Schindlmayr, S. Sanna, Physical Review Materials 1 (2017).


Consistent atomic geometries and electronic structure of five phases of potassium niobate from density-functional theory

F. Schmidt, M. Landmann, E. Rauls, N. Argiolas, S. Sanna, W.G. Schmidt, A. Schindlmayr, Advances in Materials Science and Engineering 2017 (2017).


2016

LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects

A. Riefer, M. Friedrich, S. Sanna, U. Gerstmann, A. Schindlmayr, W.G. Schmidt, Physical Review B 93 (2016).


LiTaO3 phonon dispersion and ferroelectric transition calculated from first principles

M. Friedrich, A. Schindlmayr, W.G. Schmidt, S. Sanna, Physica Status Solidi B 253 (2016) 683–689.


2015

Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory

M. Friedrich, A. Riefer, S. Sanna, W.G. Schmidt, A. Schindlmayr, Journal of Physics: Condensed Matter 27 (2015).


Ab initio study of strain effects on the quasiparticle bands and effective masses in silicon

M. Bouhassoune, A. Schindlmayr, Advances in Condensed Matter Physics 2015 (2015).


2014

Spin excitations in solids from many-body perturbation theory

C. Friedrich, E. Şaşıoğlu, M. Müller, A. Schindlmayr, S. Blügel, in: C. Di Valentin, S. Botti, M. Cococcioni (Eds.), First Principles Approaches to Spectroscopic Properties of Complex Materials, Springer, Berlin, Heidelberg, 2014, pp. 259–301.


The GW approximation for the electronic self-energy

A. Schindlmayr, in: V. Bach, L. Delle Site (Eds.), Many-Electron Approaches in Physics, Chemistry and Mathematics, Springer, Cham, 2014, pp. 343–357.


Many-body perturbation theory: The GW approximation

C. Friedrich, A. Schindlmayr, in: S. Blügel, N. Helbig, V. Meden, D. Wortmann (Eds.), Computing Solids: Models, Ab Initio Methods and Supercomputing, Forschungszentrum Jülich, Jülich, 2014, p. A4.1-A4.21.


Theoretical investigation of the band structure of picene single crystals within the GW approximation

S. Yanagisawa, Y. Morikawa, A. Schindlmayr, Japanese Journal of Applied Physics 53 (2014).


2013

Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations

A. Riefer, M. Rohrmüller, M. Landmann, S. Sanna, E. Rauls, N.J. Vollmers, R. Hölscher, M. Witte, Y. Li, U. Gerstmann, A. Schindlmayr, W.G. Schmidt, in: W.E. Nagel, D.H. Kröner, M.M. Resch (Eds.), High Performance Computing in Science and Engineering ‘13, Springer, Cham, 2013, pp. 93–104.





2012

Hybrid functionals and GW approximation in the FLAPW method

C. Friedrich, M. Betzinger, M. Schlipf, S. Blügel, A. Schindlmayr, Journal of Physics: Condensed Matter 24 (2012).


2011

Theoretical approach to the ultrafast nonlinear optical response of metal slabs

M. Wand, A. Schindlmayr, T. Meier, J. Förstner, in: CLEO:2011 - Laser Applications to Photonic Applications , Optical Society of America, 2011.


Simulation of the ultrafast nonlinear optical response of metal slabs

M. Wand, A. Schindlmayr, T. Meier, J. Förstner, Physica Status Solidi B 248 (2011) 887–891.


2010

First-principles calculation of electronic excitations in solids with SPEX

A. Schindlmayr, C. Friedrich, E. Şaşıoğlu, S. Blügel, in: F.M. Dolg (Ed.), Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics, Oldenbourg, München, 2010, pp. 67–78.


Electronic structure and effective masses in strained silicon

M. Bouhassoune, A. Schindlmayr, Physica Status Solidi C 7 (2010) 460–463.


Do we know the band gap of lithium niobate?

C. Thierfelder, S. Sanna, A. Schindlmayr, W.G. Schmidt, Physica Status Solidi C 7 (2010) 362–365.


Wannier-function approach to spin excitations in solids

E. Şaşıoğlu, A. Schindlmayr, C. Friedrich, F. Freimuth, S. Blügel, Physical Review B 81 (2010).


First-principles calculation of electronic excitations in solids with SPEX

A. Schindlmayr, C. Friedrich, E. Şaşıoğlu, S. Blügel, Zeitschrift Für Physikalische Chemie 224 (2010) 357–368.



2009

Optical conductivity of metals from first principles

A. Schindlmayr, in: D.N. Chigrin (Ed.), Theoretical and Computational Nanophotonics: Proceedings of the 2nd International Workshop, American Institute of Physics, 2009, pp. 157–159.


Measurement of effective electron mass in biaxial tensile strained silicon on insulator

S.F. Feste, T. Schäpers, D. Buca, Q.T. Zhao, J. Knoch, M. Bouhassoune, A. Schindlmayr, S. Mantl, Applied Physics Letters 95 (2009).


Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method

C. Friedrich, A. Schindlmayr, S. Blügel, Computer Physics Communications 180 (2009) 347–359.


2008

Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach

C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, M. Scheffler, Physical Review B 77 (2008).


2007

Interaction of radiation with matter. Part II: Light and electrons

A. Schindlmayr, in: K. Urban, C.M. Schneider, T. Brückel, S. Blügel (Eds.), Probing the Nanoworld , Forschungszentrum Jülich, Jülich, 2007, p. A1.21-A1.36.


Quasiparticle calculations for point defects at semiconductor surfaces

A. Schindlmayr, M. Scheffler, in: D.A. Drabold, S.K. Estreicher (Eds.), Theory of Defects in Semiconductors, Springer, Berlin, Heidelberg, 2007, pp. 165–192.


Time-dependent density-functional theory for extended systems

S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Reports on Progress in Physics 70 (2007) 357–407.


Ab initio study of the half-metal to metal transition in strained magnetite

M. Friák, A. Schindlmayr, M. Scheffler, New Journal of Physics 9 (2007).


Dielectric anisotropy in the GW space–time method

C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, R.W. Godby, M. Scheffler, Computer Physics Communications 176 (2007) 1–13.


2006

Many-body perturbation theory: The GW approximation

C. Friedrich, A. Schindlmayr, in: S. Blügel, G. Gompper, E. Koch, H. Müller-Krumbhaar, R. Spatschek, R.G. Winkler (Eds.), Computational Condensed Matter Physics, Forschungszentrum Jülich, Jülich, 2006, p. A5.1-A5.21.


Time-dependent density-functional theory

A. Schindlmayr, in: S. Blügel, G. Gompper, E. Koch, H. Müller-Krumbhaar, R. Spatschek, R.G. Winkler (Eds.), Computational Condensed Matter Physics, Forschungszentrum Jülich, Jülich, 2006, p. A4.1-A4.19.


Many-body perturbation theory: The GW approximation

C. Friedrich, A. Schindlmayr, in: J. Grotendorst, S. Blügel, D. Marx (Eds.), Computational Nanoscience: Do It Yourself!, John von Neumann Institute for Computing, Jülich, 2006, pp. 335–355.




2005

Magnetic excitations

A. Schindlmayr, in: S. Blügel, T. Brückel, C.M. Schneider (Eds.), Magnetism Goes Nano, Forschungszentrum Jülich, Jülich, 2005, p. D1.1-D1.20.


2002

Quasiparticle calculations for point defects on semiconductor surfaces

M. Hedström, A. Schindlmayr, M. Scheffler, Physica Status Solidi B 234 (2002) 346–353.


2001

Self-consistency and vertex corrections beyond the GW approximation

A. Schindlmayr, in: S.G. Pandalai (Ed.), Recent Research Developments in Physics, Transworld Research Network, Trivandrum, 2001, pp. 277–288.


Diagrammatic self-energy approximations and the total particle number

A. Schindlmayr, P. García-González, R.W. Godby, Physical Review B 64 (2001).


Exchange-correlation kernels for excited states in solids

K. Tatarczyk, A. Schindlmayr, M. Scheffler, Physical Review B 63 (2001).


2000


1999

Universality of the Hohenberg–Kohn functional

A. Schindlmayr, American Journal of Physics 67 (1999) 933–934.


1998

Spectra and total energies from self-consistent many-body perturbation theory

A. Schindlmayr, T.J. Pollehn, R.W. Godby, Physical Review B 58 (1998) 12684–12690.



Assessment of the GW approximation using Hubbard chains

T.J. Pollehn, A. Schindlmayr, R.W. Godby, Journal of Physics: Condensed Matter 10 (1998) 1273–1283.


1997

Excitons with anisotropic effective mass

A. Schindlmayr, European Journal of Physics 18 (1997) 374–376.



1995


Alle Publikationen anzeigen

Grup­pen­lei­tung