Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Publications


Open list in Research Information System

2020

Metasurfaces help lasers to mode-lock

B. Sain, T. Zentgraf, Light: Science & Applications (2020), 9, pp. 67


Polarization-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, T. Zentgraf, ACS Nano (2020), 14(5), pp. 5553–5559


A dielectric metasurface optical chip for the generation of cold atoms

L. Zhu, X. Liu, B. Sain, M. Wang, C. Schlickriede, Y. Tang, J. Deng, K. Li, J. Yang, M. Holynski, S. Zhang, T. Zentgraf, K. Bongs, Y. Lien, G. Li, Science Advances (2020), 6(31)

<jats:p>Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this study, we report on a novel scheme that uses a metasurface optical chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers ~10<jats:sup>7</jats:sup> and temperatures (about 35 μK) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress toward fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing, and other areas.</jats:p>


    All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers

    T. Chantakit, C. Schlickriede, B. Sain, F. Meyer, T. Weiss, N. Chattham, T. Zentgraf, Photonics Research (2020), 8(9), pp. 1435-1440


    Nonlinear imaging with all-dielectric metasurfaces

    C. Schlickriede, S.S. Kruk, L. Wang, B. Sain, Y. Kivshar, T. Zentgraf, Nano Letters (2020), 20(6), pp. 4370–4376


    All-optical switching of a dye-doped liquid crystal plasmonic metasurface

    B. Atorf, H. Mühlenbernd, T. Zentgraf, H. Kitzerow, Optics Express (2020), 28(6), pp. 8898-8908


    Nonlinear Wavefront Control by Geometric-Phase Dielectric Metasurfaces: Influence of Mode Field and Rotational Symmetry

    B. Liu, B. Sain, B. Reineke, R. Zhao, C. Meier, L. Huang, Y. Jiang, T. Zentgraf, Advanced Optical Materials (2020), 8(9)

    Nonlinear Pancharatnam–Berry phase metasurfaces facilitate the nontrivial phase modulation for frequency conversion processes by leveraging photon‐spin dependent nonlinear geometric‐phases. However, plasmonic metasurfaces show some severe limitation for nonlinear frequency conversion due to the intrinsic high ohmic loss and low damage threshold of plasmonic nanostructures. Here, the nonlinear geometric‐phases associated with the third‐harmonic generation process occurring in all‐dielectric metasurfaces is studied systematically, which are composed of silicon nanofins with different in‐plane rotational symmetries. It is found that the wave coupling among different field components of the resonant fundamental field gives rise to the appearance of different nonlinear geometric‐phases of the generated third‐harmonic signals. The experimental observations of the nonlinear beam steering and nonlinear holography realized in this work by all‐dielectric geometric‐phase metasurfaces are well explained with the developed theory. This work offers a new physical picture to understand the nonlinear optical process occurring at nanoscale dielectric resonators and will help in the design of nonlinear metasurfaces with tailored phase properties.


    Second harmonic imaging of plasmonic Pancharatnam-Berry phase metasurfaces coupled to monolayers of WS2

    F. Spreyer, R. Zhao, L. Huang, T. Zentgraf, Nanophotonics (2020), 9(2), pp. 351–360

    <jats:p>The nonlinear processes of frequency conversion such as second harmonic generation (SHG) usually obey certain selection rules, resulting from the preservation of different kinds of physical quantities, e.g. the angular momentum. For the SHG created by a monolayer of transition-metal dichalcogenides (TMDCs) such as WS<jats:sub>2</jats:sub>, the valley-exciton locked selection rule predicts an SHG signal in the cross-polarization state. By combining plasmonic nanostructures with a monolayer of TMDC, a hybrid metasurface is realized, which affects this nonlinear process because of an additional polarization conversion process. Here, we observe that the plasmonic metasurface modifies the light-matter interaction with the TMDC, resulting in an SHG signal that is co-polarized with respect to the incident field, which is usually forbidden for the monolayers of TMDC. We fabricate such hybrid metasurfaces by placing plasmonic nanorods on top of a monolayer WS<jats:sub>2</jats:sub> and study the valley-exciton locked SHG emission from such system for different parameters, such as wavelength and polarization. Furthermore, we show the potential of the hybrid metasurface for tailoring nonlinear processes by adding additional phase information to the SHG signal using the Pancharatnam-Berry phase effect. This allows direct tailoring of the SHG emission to the far-field.</jats:p>


      Selective Etching of (111)B-Oriented AlxGa1−xAs-Layers for Epitaxial Lift-Off

      T. Henksmeier, M. Eppinger, B. Reineke, T. Zentgraf, C. Meier, D. Reuter, physica status solidi (a) (2020), n/a(n/a), pp. 2000408

      GaAs-(111)-nanostructures exhibiting second harmonic generation are new building blocks in nonlinear optics. Such structures can be fabricated through epitaxial lift-off using selective etching of Al-containing layers and subsequent transfer to glass substrates. Herein, the selective etching of (111)B-oriented AlxGa1−xAs sacrificial layers (10–50 nm thick) with different aluminum concentrations (x = 0.5–1.0) in 10\% hydrofluoric acid is investigated and compared with standard (100)-oriented structures. The thinner the sacrificial layer and the lower the aluminum content, the lower the lateral etch rate. For both orientations, the lateral etch rates are in the same order of magnitude, but some quantitative differences exist. Furthermore, the epitaxial lift-off, the transfer, and the nanopatterning of thin (111)B-oriented GaAs membranes are demonstrated. Atomic force microscopy and high-resolution X-ray diffraction measurements reveal the high structural quality of the transferred GaAs-(111) films.


        2019

        Metasurface interferometry toward quantum sensors

        P. Georgi, M. Massaro, K. Luo, B. Sain, N. Montaut, H. Herrmann, T. Weiss, G. Li, C. Silberhorn, T. Zentgraf, Light: Science & Applications (2019), 8, pp. 70


        Reconfigurable metasurface hologram by utilizing addressable dynamic pixels

        T. Li, Q. Wei, B. Reineke, F. Walter, Y. Wang, T. Zentgraf, L. Huang, Optics Express (2019), 27(15), pp. 21153-21162


        Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces

        Z. Lin, L. Huang, R. Zhao, Q. Wei, T. Zentgraf, Y. Wang, X. Li, Optics Express (2019), 27(13), pp. 18740-18750


        Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review

        B. Sain, C. Meier, T. Zentgraf, Advanced Photonics (2019), 1(2), pp. 024002

        Free from phase-matching constraints, plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms. However, high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics. All-dielectric metasurfaces, supporting both electric and magnetic Mie-type resonances in their nanostructures, have appeared as a promising alternative to nonlinear plasmonics. High-index dielectric nanostructures, allowing additional magnetic resonances, can induce magnetic nonlinear effects, which, along with electric nonlinearities, increase the nonlinear conversion efficiency. In addition, low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities, resulting in a considerable enhancement of the nonlinear processes. We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces, including the role of Mie modes, Fano resonances, and anapole moments for harmonic generation, wave mixing, and ultrafast optical switching. Furthermore, we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces. We discuss techniques to realize all-dielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.


        Miniaturized Metalens Based Optical Tweezers on Liquid Crystal Droplets for Lab-on-a-Chip Optical Motors

        S. Suwannasopon, F. Meyer, C. Schlickriede, P. Chaisakul, J. T-Thienprasert, J. Limtrakul, T. Zentgraf, N. Chattham, Crystals (2019), 9(10), pp. 515

        <jats:p>Surfaces covered with layers of ultrathin nanoantenna structures—so called metasurfaces have recently been proven capable of completely controlling phase of light. Metalenses have emerged from the advance in the development of metasurfaces providing a new basis for recasting traditional lenses into thin, planar optical components capable of focusing light. The lens made of arrays of plasmonic gold nanorods were fabricated on a glass substrate by using electron beam lithography. A 1064 nm laser was used to create a high intensity circularly polarized light focal spot through metalens of focal length 800 µm, N.A. = 0.6 fabricated based on Pancharatnam-Berry phase principle. We demonstrated that optical rotation of birefringent nematic liquid crystal droplets trapped in the laser beam was possible through this metalens. The rotation of birefringent droplets convinced that the optical trap possesses strong enough angular momentum of light from radiation of each nanostructure acting like a local half waveplate and introducing an orientation-dependent phase to light. Here, we show the success in creating a miniaturized and robust metalens based optical tweezers system capable of rotating liquid crystals droplets to imitate an optical motor for future lab-on-a-chip applications.</jats:p>


          Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography

          B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. de Angelis, T. Zentgraf, Nano Letters (2019), 19(9), pp. 6585–6591


          Four‐Wave Mixing Holographic Multiplexing Based on Nonlinear Metasurfaces

          Z. Lin, L. Huang, Z.T. Xu, X. Li, T. Zentgraf, Y. Wang, Advanced Optical Materials (2019), 7(21), pp. 1900782


          Simultaneous Spectral and Spatial Modulation for Color Printing and Holography Using All-dielectric Metasurfaces

          Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, T. Zentgraf, Nano Letters (2019), 19(12), pp. 8964–8971


          Strong nonlinear optical response from ZnO by coupled and lattice-matched nanoantennas

          M. Protte, N. Weber, C. Golla, T. Zentgraf, C. Meier, Journal of Applied Physics (2019), 125


          Nonreciprocal Asymmetric Polarization Encryption by Layered Plasmonic Metasurfaces

          D. Frese, Q. Wei, Y. Wang, L. Huang, T. Zentgraf, Nano Letters (2019), 19(6), pp. 3976-3980


          Strong Nonlinear Optical Activity Induced by Lattice Surface Modes on Plasmonic Metasurface

          S. Chen, B. Reineke, G. Li, T. Zentgraf, S. Zhang, Nano Letters (2019), 19(9), pp. 6278-6283


          2018

          Imaging through Nonlinear Metalens Using Second Harmonic Generation

          C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, T. Zentgraf, Advanced Materials (2018), 30(8)


          Spin and Geometric Phase Control Four-Wave Mixing from Metasurfaces

          G. Li, G. Sartorello, S. Chen, L.H. Nicholls, K.F. Li, T. Zentgraf, S. Zhang, A.V. Zayats, Laser & Photonics Reviews (2018), 12(6)


          Multichannel vectorial holographic display and encryption

          R. Zhao, B. Sain, Q. Wei, C. Tang, X. Li, T. Weiss, L. Huang, Y. Wang, T. Zentgraf, Light: Science & Applications (2018), 7(1)


          Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces

          X. Song, L. Huang, C. Tang, J. Li, X. Li, J. Liu, Y. Wang, T. Zentgraf, Advanced Optical Materials (2018), 6(4)


          Editorial for the theories and applications of metasurfaces

          Z. Guo, X. Chen, T. Zentgraf, Journal of Physics D: Applied Physics (2018), 51(15)


          Nonlinear Quasi-Phase Matching with metasurfaces

          S. Heron, B. Reineke, S. Vezian, T. Zentgraf, B. Damilano, P. Genevet, in: 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), IEEE, 2018


          Efficient frequency conversion by combined photonic–plasmonic mode coupling

          N. Weber, S.P. Hoffmann, M. Albert, T. Zentgraf, C. Meier, Journal of Applied Physics (2018), 123(10)


          Tailored UV Emission by Nonlinear IR Excitation from ZnO Photonic Crystal Nanocavities

          S.P. Hoffmann, M. Albert, N. Weber, D. Sievers, J. Förstner, T. Zentgraf, C. Meier, ACS Photonics (2018), 5, pp. 1933-1942


          Switchable Plasmonic Holograms Utilizing the Electro-Optic Effect of a Liquid-Crystal Circular Polarizer

          B. Atorf, H. Rasouli, H. Mühlenbernd, B.J. Reineke, T. Zentgraf, H. Kitzerow, The Journal of Physical Chemistry C (2018), 122(8), pp. 4600-4606


          Controlling the phase of optical nonlinearity with plasmonic metasurfaces

          S. Chen, G. Li, K.W. Cheah, T. Zentgraf, S. Zhang, Nanophotonics (2018), 7(6), pp. 1013-1024


          Nanoscale Polarization Manipulation and Encryption Based on Dielectric Metasurfaces

          R. Zhao, L. Huang, C. Tang, J. Li, X. Li, Y. Wang, T. Zentgraf, Advanced Optical Materials (2018)


          Near-field plasmonic beam engineering by complex amplitude modulation based on metasurface (Conference Presentation)

          L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, Y. Wang, T. Zentgraf, L. Huang, X. Song, in: Nanophotonics VII, SPIE, 2018


          Metasurface holography: from fundamentals to applications

          L. Huang, S. Zhang, T. Zentgraf, Nanophotonics (2018), 7(6), pp. 1169-1190


          Imaging the rainbow

          T. Zentgraf, Nature Nanotechnology (2018), 13(3), pp. 179-180


          Third Harmonic Generation Enhanced by Multipolar Interference in Complementary Silicon Metasurfaces

          S. Chen, M. Rahmani, K.F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, S. Zhang, ACS Photonics (2018), 5(5), pp. 1671-1675


          Switchable Plasmonic Metasurface Utilizing the Electro-Optic Kerr Effect of a Blue Phase Liquid Crystal

          B. Atorf, S. Friesen, R. Rennerich, H. Mühlenbernd, T. Zentgraf, H. Kitzerow, Polymer Science, Series C (2018), 60, pp. 55-62


          2017

          Beam switching and bifocal zoom lensing using active plasmonic metasurfaces

          X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen, Light: Science & Applications (2017), 6(7)


          Manipulation of vector beam polarization with geometric metasurfaces

          Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, S. Zhang, Optics Express (2017), 25(13)


          Volumetric Generation of Optical Vortices with Metasurfaces

          L. Huang, X. Song, B. Reineke, T. Li, X. Li, J. Liu, S. Zhang, Y. Wang, T. Zentgraf, ACS Photonics (2017), pp. 338-346


          Double resonant plasmonic nanoantennas for efficient second harmonic generation in zinc oxide

          N. Weber, M. Protte, F. Walter, P. Georgi, T. Zentgraf, C. Meier, Physical Review B (2017), 95(20)


          Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation

          G. Li, L. Wu, K.F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E.Y.B. Pun, T. Zentgraf, K.W. Cheah, Y. Luo, S. Zhang, Nano Letters (2017), 17(12), pp. 7974-7979


          Nonlinear photonic metasurfaces

          G. Li, S. Zhang, T. Zentgraf, Nature Reviews Materials (2017), 2(5)


          Single-pixel computational ghost imaging with helicity-dependent metasurface hologram

          H. Liu, B. Yang, Q. Guo, J. Shi, C. Guan, G. Zheng, H. Mühlenbernd, G. Li, T. Zentgraf, S. Zhang, Science Advances (2017), 3(9)


          Ultrathin Nonlinear Metasurface for Optical Image Encoding

          F. Walter, G. Li, C. Meier, S. Zhang, T. Zentgraf, Nano Letters (2017), 17(5), pp. 3171-3175


          Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes

          P. Prajongtat, S. Sriyab, T. Zentgraf, S. Hannongbua, Molecular Physics (2017), 116(1), pp. 9-18


          Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces

          P. Georgi, C. Schlickriede, G. Li, S. Zhang, T. Zentgraf, Optica (2017), 4(8)


          Directional Emission from Dielectric Leaky-Wave Nanoantennas

          M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, S. Linden, Nano Letters (2017), 17(7), pp. 4178-4183


          2016

          Rotational Doppler effect in nonlinear optics

          G. Li, T. Zentgraf, S. Zhang, Nature Physics (2016), 12(8), pp. 736-740


          Designermaterialien für nichtlineare Optik

          H. Probst, T. Zentgraf, Physik in unserer Zeit (2016), 47(2), pp. 84-89


          Helicity-Preserving Omnidirectional Plasmonic Mirror

          S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, J. Li, Advanced Optical Materials (2016), 4(5), pp. 654-658


          Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region

          Y. Grynko, T. Zentgraf, T. Meier, J. Förstner, Applied Physics B (2016), 122(9)


          Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities

          S. Chen, F. Zeuner, M. Weismann, B. Reineke, G. Li, V.K. Valev, K.W. Cheah, N.C. Panoiu, T. Zentgraf, S. Zhang, Advanced Materials (2016), 28(15), pp. 2992-2999


          Doppler-Effekt für rotierende Objekte

          T. Zentgraf, Physik in unserer Zeit (2016), 47(4), pp. 163-164


          Spin and wavelength multiplexed nonlinear metasurface holography

          W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. Qiu, J. Liu, Y. Wang, S. Zhang, T. Zentgraf, Nature Communications (2016), 7


          2015

          Metasurface holograms reaching 80% efficiency

          G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Nature Nanotechnology (2015), 10(4), pp. 308-312


          Coupling Mediated Coherent Control of Localized Surface Plasmon Polaritons

          F. Zeuner, M. Muldarisnur, A. Hildebrandt, J. Förstner, T. Zentgraf, Nano Letters (2015), 15(6), pp. 4189-4193


          Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces

          L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, T. Zentgraf, Advanced Materials (2015), 27(41), pp. 6444-6449


          Amplitude- and Phase-Controlled Surface Plasmon Polariton Excitation with Metasurfaces

          H. Mühlenbernd, P. Georgi, N. Pholchai, L. Huang, G. Li, S. Zhang, T. Zentgraf, ACS Photonics (2015), 3(1), pp. 124-129


          Continuous control of the nonlinearity phase for harmonic generations

          G. Li, S. Chen, N. Pholchai, B. Reineke, P.W.H. Wong, E.B. Pun, K.W. Cheah, T. Zentgraf, S. Zhang, Nature Materials (2015), 14(6), pp. 607-612


          Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

          C.A. Bader, F. Zeuner, M.H.W. Bader, T. Zentgraf, C. Meier, Journal of Applied Physics (2015), 118(21)


          2014

          Effect of Alignment on a Liquid Crystal/Split-Ring Resonator Metasurface

          B. Atorf, H. Mühlenbernd, M. Muldarisnur, T. Zentgraf, H. Kitzerow, ChemPhysChem (2014), 15(7), pp. 1470-1476


          Symmetry-Selective Third-Harmonic Generation from Plasmonic Metacrystals

          S. Chen, G. Li, F. Zeuner, W.H. Wong, E.Y.B. Pun, T. Zentgraf, K.W. Cheah, S. Zhang, Physical Review Letters (2014), 113(3)


          Manipulating wave propagation with geometric metasurfaces: fundamentals and applications

          L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, in: Plasmonics, SPIE, 2014


          Hochauflösende Holografie

          T. Zentgraf, Physik in unserer Zeit (2014), 45(2), pp. 58-59


          Electro-optic tuning of split ring resonators embedded in a liquid crystal

          B. Atorf, H. Mühlenbernd, M. Muldarisnur, T. Zentgraf, H. Kitzerow, Optics Letters (2014), 39(5)


          Ag‐nanoparticles in PA-templates

          A. Ezhova, J. Lindner, M. Muldarisnur, T. Zentgraf, K. Huber, 2014


          2013

          Blue-green emitting microdisks using low-temperature-grown ZnO on patterned silicon substrates

          M. Ruth, T. Zentgraf, C. Meier, Optics Express (2013), 21(21)


          Interference-induced asymmetric transmission through a monolayer of anisotropic chiral metamolecules

          S. Zhang, F. Liu, T. Zentgraf, J. Li, Physical Review A (2013), 88(2)


          Three-dimensional optical holography using a plasmonic metasurface

          L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, S. Zhang, Nature Communications (2013), 4


          Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens

          X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, S. Zhang, Advanced Optical Materials (2013), 1(7), pp. 517-521


          Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity

          L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Light: Science & Applications (2013), 2(3), pp. e70-e70


          Metalens with convex and concave functionality

          S. Zhang, X. Chen, L. Huang, B. Bai, Q. Tan, G. Jin, H. Mühlenbernd, T. Zentgraf, G. Li, C. Qiu, SPIE Newsroom (2013)


          2012

          Mapping the near-field dynamics in plasmon-induced transparency

          Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, X. Zhang, Physical Review B (2012), 86(15)


          Compact Magnetic Antennas for Directional Excitation of Surface Plasmons

          Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, X. Zhang, Nano Letters (2012), 12(9), pp. 4853-4858


          Dual-polarity plasmonic metalens for visible light

          X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, T. Zentgraf, Nature Communications (2012), 3


          Control of plasmon dynamics in coupled plasmonic hybrid mode microcavities

          N.D. Lanzillotti-Kimura, T. Zentgraf, X. Zhang, Physical Review B (2012), 86(4)


          Slow-light dispersion by transparent waveguide plasmon polaritons

          A. Ishikawa, R.F. Oulton, T. Zentgraf, X. Zhang, Physical Review B (2012), 85(15)


          Dispersionless Phase Discontinuities for Controlling Light Propagation

          L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Nano Letters (2012), 12(11), pp. 5750-5755


          2011

          A Carpet Cloak for Visible Light

          M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, X. Zhang, Nano Letters (2011), 11(7), pp. 2825-2828


          A graphene-based broadband optical modulator

          M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, Nature (2011), 474(7349), pp. 64-67


          Towards the Origin of the Nonlinear Response in Hybrid Plasmonic Systems

          T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, H. Giessen, Physical Review Letters (2011), 106(13)


          Development of Bulk Optical Negative Index Fishnet Metamaterials: Achieving a Low-Loss and Broadband Response Through Coupling

          J. Valentine, S. Zhang, T. Zentgraf, X. Zhang, Proceedings of the IEEE (2011), 99(10), pp. 1682-1690


          Tailoring the photonic band splitting in metallodielectric photonic crystal superlattices

          T. Utikal, T. Zentgraf, S.G. Tikhodeev, M. Lippitz, H. Giessen, Physical Review B (2011), 84(7)


          Plasmonic Luneburg and Eaton lenses

          T. Zentgraf, Y. Liu, M.H. Mikkelsen, J. Valentine, X. Zhang, Nature Nanotechnology (2011), 6(3), pp. 151-155


          2010

          Transformational Plasmon Optics

          Y. Liu, T. Zentgraf, G. Bartal, X. Zhang, Nano Letters (2010), 10(6), pp. 1991-1997


          An Optical “Janus” Device for Integrated Photonics

          T. Zentgraf, J. Valentine, N. Tapia, J. Li, X. Zhang, Advanced Materials (2010), 22(23), pp. 2561-2564


          All-Liquid Photonic Microcavity Stabilized by Quantum Dots

          T. Yim, T. Zentgraf, B. Min, X. Zhang, Journal of the American Chemical Society (2010), 132(7), pp. 2154-2156


          Far-field measurement of ultra-small plasmonic mode volume

          S. Zhang, Y. Park, Y. Liu, T. Zentgraf, X. Zhang, Optics Express (2010), 18(6)


          Extremely low-loss slow-light modes in plasmonic dielectric hybrid systems

          A. Ishikawa, R.F. Oulton, T. Zentgraf, X. Zhang, in: Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, SPIE, 2010


          Light-driven nanoscale plasmonic motors

          M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Nature Nanotechnology (2010), 5(8), pp. 570-573


          Semiconductor plasmon laser

          V.J. Sorger, R.F. Oulton, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, in: Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, SPIE, 2010


          2009

          An optical cloak made of dielectrics

          J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, Nature Materials (2009), 8(7), pp. 568-571


          Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems

          T. Zentgraf, S. Zhang, R.F. Oulton, X. Zhang, Physical Review B (2009), 80(19)


          Plasmon lasers at deep subwavelength scale

          R.F. Oulton, V.J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature (2009), 461(7264), pp. 629-632


          2008

          Transition from thin-film to bulk properties of metamaterials

          C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T.P. Meyrath, H. Giessen, Physical Review B (2008), 77(3)


          Optical resonances of bowtie slot antennas and their geometry and material dependence

          H. Guo, T.P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, H. Giessen, Optics Express (2008), 16(11)


          Three-dimensional optical metamaterial with a negative refractive index

          J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Nature (2008), 455(7211), pp. 376-379


          Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials

          T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, H. Giessen, Optics Letters (2008), 33(8)


          Electromagnetic induction in metamaterials

          T.P. Meyrath, T. Zentgraf, C. Rockstuhl, H. Giessen, Applied Physics B (2008), 93(1), pp. 107-110


          Near-field–induced tunability of surface plasmon polaritons in composite metallic nanostructures

          A. CHRIST, G. LÉVÊQUE, O.J.F. MARTIN, T. Zentgraf, J. KUHL, C. BAUER, H. GIESSEN, S.G. TIKHODEEV, Journal of Microscopy (2008), 229(2), pp. 344-353


          Max number of publications reached - all publications can be found in our Research Infomation System.

          Open list in Research Information System

          Head

          Prof. Dr. Thomas Zentgraf

          Ultrafast Nanophotonics

          Thomas Zentgraf
          Phone:
          +49 5251 60-5865
          Fax:
          +49 5251 60-5886
          Office:
          P8.3.03

          The University for the Information Society